Cargando…

Voltage-dependent anion channels mediated apoptosis in refractory epilepsy

The purpose of this study was to investigate the role of voltage-dependent anion channel (VDAC) in mitochondria-mediated apoptosis of neurons in refractory epilepsy. Western blot analyses were carried out to detect the changes in cytochrome C, caspase 9, Bax, and Bcl-2. TUNEL assays were also carrie...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yan, Jiang, Wen-Jing, Ma, Lin, Lin, Yan, Wang, Xing-Bang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712518/
https://www.ncbi.nlm.nih.gov/pubmed/33336032
http://dx.doi.org/10.1515/med-2020-0113
Descripción
Sumario:The purpose of this study was to investigate the role of voltage-dependent anion channel (VDAC) in mitochondria-mediated apoptosis of neurons in refractory epilepsy. Western blot analyses were carried out to detect the changes in cytochrome C, caspase 9, Bax, and Bcl-2. TUNEL assays were also carried out to investigate cell apoptosis under the upregulation and downregulation of VDAC1 with or without Bax or Bcl-2. VDAC1 induced Bax, Bcl-2, and caspase 9, increasing the release of cytochrome C. VDAC1 played an essential role in the apoptotic cell death of refractory epilepsy. It is concluded that VDAC1 plays an important role in refractory epilepsy and could be a possible therapeutic target of anti-epileptic drugs. The current study provides a new understanding of the possible mechanisms of refractory epilepsy.