Cargando…

Ultracold Bosons on a Regular Spherical Mesh

Here, the zero-temperature phase behavior of bosonic particles living on the nodes of a regular spherical mesh (“Platonic mesh”) and interacting through an extended Bose-Hubbard Hamiltonian has been studied. Only the hard-core version of the model for two instances of Platonic mesh is considered her...

Descripción completa

Detalles Bibliográficos
Autor principal: Prestipino, Santi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712534/
https://www.ncbi.nlm.nih.gov/pubmed/33287057
http://dx.doi.org/10.3390/e22111289
Descripción
Sumario:Here, the zero-temperature phase behavior of bosonic particles living on the nodes of a regular spherical mesh (“Platonic mesh”) and interacting through an extended Bose-Hubbard Hamiltonian has been studied. Only the hard-core version of the model for two instances of Platonic mesh is considered here. Using the mean-field decoupling approximation, it is shown that the system may exist in various ground states, which can be regarded as analogs of gas, solid, supersolid, and superfluid. For one mesh, by comparing the theoretical results with the outcome of numerical diagonalization, I manage to uncover the signatures of diagonal and off-diagonal spatial orders in a finite quantum system.