Cargando…
Sparse Multicategory Generalized Distance Weighted Discrimination in Ultra-High Dimensions
Distance weighted discrimination (DWD) is an appealing classification method that is capable of overcoming data piling problems in high-dimensional settings. Especially when various sparsity structures are assumed in these settings, variable selection in multicategory classification poses great chal...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712546/ https://www.ncbi.nlm.nih.gov/pubmed/33287025 http://dx.doi.org/10.3390/e22111257 |
_version_ | 1783618396083978240 |
---|---|
author | Su, Tong Wang, Yafei Liu, Yi Branton, William G. Asahchop, Eugene Power, Christopher Jiang, Bei Kong, Linglong Tang, Niansheng |
author_facet | Su, Tong Wang, Yafei Liu, Yi Branton, William G. Asahchop, Eugene Power, Christopher Jiang, Bei Kong, Linglong Tang, Niansheng |
author_sort | Su, Tong |
collection | PubMed |
description | Distance weighted discrimination (DWD) is an appealing classification method that is capable of overcoming data piling problems in high-dimensional settings. Especially when various sparsity structures are assumed in these settings, variable selection in multicategory classification poses great challenges. In this paper, we propose a multicategory generalized DWD (MgDWD) method that maintains intrinsic variable group structures during selection using a sparse group lasso penalty. Theoretically, we derive minimizer uniqueness for the penalized MgDWD loss function and consistency properties for the proposed classifier. We further develop an efficient algorithm based on the proximal operator to solve the optimization problem. The performance of MgDWD is evaluated using finite sample simulations and miRNA data from an HIV study. |
format | Online Article Text |
id | pubmed-7712546 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77125462021-02-24 Sparse Multicategory Generalized Distance Weighted Discrimination in Ultra-High Dimensions Su, Tong Wang, Yafei Liu, Yi Branton, William G. Asahchop, Eugene Power, Christopher Jiang, Bei Kong, Linglong Tang, Niansheng Entropy (Basel) Article Distance weighted discrimination (DWD) is an appealing classification method that is capable of overcoming data piling problems in high-dimensional settings. Especially when various sparsity structures are assumed in these settings, variable selection in multicategory classification poses great challenges. In this paper, we propose a multicategory generalized DWD (MgDWD) method that maintains intrinsic variable group structures during selection using a sparse group lasso penalty. Theoretically, we derive minimizer uniqueness for the penalized MgDWD loss function and consistency properties for the proposed classifier. We further develop an efficient algorithm based on the proximal operator to solve the optimization problem. The performance of MgDWD is evaluated using finite sample simulations and miRNA data from an HIV study. MDPI 2020-11-05 /pmc/articles/PMC7712546/ /pubmed/33287025 http://dx.doi.org/10.3390/e22111257 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Su, Tong Wang, Yafei Liu, Yi Branton, William G. Asahchop, Eugene Power, Christopher Jiang, Bei Kong, Linglong Tang, Niansheng Sparse Multicategory Generalized Distance Weighted Discrimination in Ultra-High Dimensions |
title | Sparse Multicategory Generalized Distance Weighted Discrimination in Ultra-High Dimensions |
title_full | Sparse Multicategory Generalized Distance Weighted Discrimination in Ultra-High Dimensions |
title_fullStr | Sparse Multicategory Generalized Distance Weighted Discrimination in Ultra-High Dimensions |
title_full_unstemmed | Sparse Multicategory Generalized Distance Weighted Discrimination in Ultra-High Dimensions |
title_short | Sparse Multicategory Generalized Distance Weighted Discrimination in Ultra-High Dimensions |
title_sort | sparse multicategory generalized distance weighted discrimination in ultra-high dimensions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712546/ https://www.ncbi.nlm.nih.gov/pubmed/33287025 http://dx.doi.org/10.3390/e22111257 |
work_keys_str_mv | AT sutong sparsemulticategorygeneralizeddistanceweighteddiscriminationinultrahighdimensions AT wangyafei sparsemulticategorygeneralizeddistanceweighteddiscriminationinultrahighdimensions AT liuyi sparsemulticategorygeneralizeddistanceweighteddiscriminationinultrahighdimensions AT brantonwilliamg sparsemulticategorygeneralizeddistanceweighteddiscriminationinultrahighdimensions AT asahchopeugene sparsemulticategorygeneralizeddistanceweighteddiscriminationinultrahighdimensions AT powerchristopher sparsemulticategorygeneralizeddistanceweighteddiscriminationinultrahighdimensions AT jiangbei sparsemulticategorygeneralizeddistanceweighteddiscriminationinultrahighdimensions AT konglinglong sparsemulticategorygeneralizeddistanceweighteddiscriminationinultrahighdimensions AT tangniansheng sparsemulticategorygeneralizeddistanceweighteddiscriminationinultrahighdimensions |