Cargando…
Target Activity of Isaria tenuipes (Hypocreales: Clavicipitaceae) Fungal Strains against Dengue Vector Aedes aegypti (Linn.) and Its Non-Target Activity Against Aquatic Predators
The present investigation aimed to determine the fungal toxicity of Isaria tenuipes (My-It) against the dengue mosquito vector Aedes aegypti L. and its non-target impact against the aquatic predator Toxorhynchites splendens. Lethal concentrations (LC(50) and LC(90)) of My-It were observed in 2.27 an...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712577/ https://www.ncbi.nlm.nih.gov/pubmed/33003327 http://dx.doi.org/10.3390/jof6040196 |
Sumario: | The present investigation aimed to determine the fungal toxicity of Isaria tenuipes (My-It) against the dengue mosquito vector Aedes aegypti L. and its non-target impact against the aquatic predator Toxorhynchites splendens. Lethal concentrations (LC(50) and LC(90)) of My-It were observed in 2.27 and 2.93 log ppm dosages, respectively. The sub-lethal dosage (My-It-1 × 10(4) conidia/mL) displayed a significant oviposition deterrence index and also blocked the fecundity rate of dengue mosquitos in a dose-dependent manner. The level of major detoxifying enzymes, such as carboxylesterase (α-and β-) and SOD, significantly declined in both third and fourth instar larvae at the maximum dosage of My-It 1 × 10(5) conidia/mL. However, the level of glutathione S-transferase (GST) and cytochrome P-450 (CYP450) declined steadily when the sub-lethal dosage was increased and attained maximum reduction in the enzyme level at the dosage of My-It (1 × 10(5) conidia/mL). Correspondingly, the gut-histology and photomicrography results made evident that My-It (1 × 10(5) conidia/mL) heavily damaged the internal gut cells and external physiology of the dengue larvae compared to the control. Moreover, the non-target toxicity against the beneficial predator revealed that My-It at the maximum dosage (1 × 10(20) conidia/mL) was found to be less toxic with <45% larval toxicity against Tx. splendens. Thus, the present toxicological research on Isaria tenuipes showed that it is target-specific and a potential agent for managing medically threatening arthropods. |
---|