Cargando…

SARS-CoV-2 Proteins Induce IFNG in Th1 Lymphocytes Generated from CD4+ Cells from Healthy, Unexposed Polish Donors

The outbreak of the SARS-CoV-2 virus in December 2019 has caused the deaths of several hundred thousand people worldwide. Currently, the pathogenesis of COVID-19 is poorly understood. During the course of COVID-19 infection, many patients experience deterioration, which might be associated with syst...

Descripción completa

Detalles Bibliográficos
Autores principales: Sałkowska, Anna, Karwaciak, Iwona, Karaś, Kaja, Dastych, Jarosław, Ratajewski, Marcin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712722/
https://www.ncbi.nlm.nih.gov/pubmed/33198287
http://dx.doi.org/10.3390/vaccines8040673
Descripción
Sumario:The outbreak of the SARS-CoV-2 virus in December 2019 has caused the deaths of several hundred thousand people worldwide. Currently, the pathogenesis of COVID-19 is poorly understood. During the course of COVID-19 infection, many patients experience deterioration, which might be associated with systemic inflammation and cytokine storm syndrome; however, other patients have mild symptoms or are asymptomatic. There are some suggestions that impaired cellular immunity through a reduction in Th1 response and IFNG (interferon gamma) expression, as well as cross-reactivity with common cold coronaviruses, might be involved in the differential COVID-19 course. Here, we show that CD4+ cells isolated from unexposed healthy donors that were differentiated towards the Th1 lineage in the presence of SARS-CoV-2 proteins exhibited induction of IFNG. Interestingly, the same cells induced to differentiate towards a Th17 lineage did not exhibit changes in IFNG expression or Th17-related cytokines. This suggests the cellular response to SARS-CoV-2 viral proteins is primarily associated with Th1 lymphocytes and may be dependent on past infections with common cold coronaviruses or vaccinations that induce unspecific cellular responses, e.g., BCG (Bacillus Calmette-Guérin). Thus, our results might explain the high variability in the course of COVID-19 among populations of different countries.