Cargando…
Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density
As a new-era of energy harvesting technology, the enhancement of triboelectric charge density of triboelectric nanogenerator (TENG) is always crucial for its large-scale application on Internet of Things (IoTs) and artificial intelligence (AI). Here, a microstructure-designed direct-current TENG (MD...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712892/ https://www.ncbi.nlm.nih.gov/pubmed/33273477 http://dx.doi.org/10.1038/s41467-020-20045-y |
Sumario: | As a new-era of energy harvesting technology, the enhancement of triboelectric charge density of triboelectric nanogenerator (TENG) is always crucial for its large-scale application on Internet of Things (IoTs) and artificial intelligence (AI). Here, a microstructure-designed direct-current TENG (MDC-TENG) with rationally patterned electrode structure is presented to enhance its effective surface charge density by increasing the efficiency of contact electrification. Thus, the MDC-TENG achieves a record high charge density of ~5.4 mC m(−2), which is over 2-fold the state-of-art of AC-TENGs and over 10-fold compared to previous DC-TENGs. The MDC-TENG realizes both the miniaturized device and high output performance. Meanwhile, its effective charge density can be further improved as the device size increases. Our work not only provides a miniaturization strategy of TENG for the application in IoTs and AI as energy supply or self-powered sensor, but also presents a paradigm shift for large-scale energy harvesting by TENGs. |
---|