Cargando…
Deep Semantic-Preserving Reconstruction Hashing for Unsupervised Cross-Modal Retrieval
Deep hashing is the mainstream algorithm for large-scale cross-modal retrieval due to its high retrieval speed and low storage capacity, but the problem of reconstruction of modal semantic information is still very challenging. In order to further solve the problem of unsupervised cross-modal retrie...
Autores principales: | Cheng, Shuli, Wang, Liejun, Du, Anyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712897/ https://www.ncbi.nlm.nih.gov/pubmed/33287034 http://dx.doi.org/10.3390/e22111266 |
Ejemplares similares
-
Semantics-Reconstructing Hashing for Cross-Modal Retrieval
por: Zhang, Peng-Fei, et al.
Publicado: (2020) -
Deep parameter-free attention hashing for image retrieval
por: Yang, Wenjing, et al.
Publicado: (2022) -
Hierarchical semantic interaction-based deep hashing network for cross-modal retrieval
por: Chen, Shubai, et al.
Publicado: (2021) -
Deep consistency-preserving hash auto-encoders for neuroimage cross-modal retrieval
por: Wang, Xinyu, et al.
Publicado: (2023) -
Deep Unsupervised Hashing for Large-Scale Cross-Modal Retrieval Using Knowledge Distillation Model
por: Li, Mingyong, et al.
Publicado: (2021)