Cargando…
Isavuconazole: Mechanism of Action, Clinical Efficacy, and Resistance
Increasing incidence of invasive fungal infections combined with a growing population of immunocompromised hosts has created a rising need for antifungal agents. Isavuconazole, a second-generation broad-spectrum triazole with activity against yeasts, dimorphic fungi, and molds, has a favorable safet...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712939/ https://www.ncbi.nlm.nih.gov/pubmed/33260353 http://dx.doi.org/10.3390/jof6040324 |
Sumario: | Increasing incidence of invasive fungal infections combined with a growing population of immunocompromised hosts has created a rising need for antifungal agents. Isavuconazole, a second-generation broad-spectrum triazole with activity against yeasts, dimorphic fungi, and molds, has a favorable safety profile and predictable pharmacokinetics. Patients typically tolerate isavuconazole well with fewer drug–drug interactions. Clinical trials have found it to be noninferior to voriconazole for invasive aspergillosis, an alternative therapy for salvage treatment of mucormycosis, and suitable for stepdown therapy with invasive candidiasis. Cross-resistance with other triazoles is common. More studies are needed to determine the role of isavuconazole in anti-mold prophylaxis in high-risk patients. |
---|