Cargando…
Monitoring Volatility Change for Time Series Based on Support Vector Regression
This paper considers monitoring an anomaly from sequentially observed time series with heteroscedastic conditional volatilities based on the cumulative sum (CUSUM) method combined with support vector regression (SVR). The proposed online monitoring process is designed to detect a significant change...
Autores principales: | Lee, Sangyeol, Kim, Chang Kyeom, Kim, Dongwuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712961/ https://www.ncbi.nlm.nih.gov/pubmed/33287077 http://dx.doi.org/10.3390/e22111312 |
Ejemplares similares
-
Hybrid CUSUM Change Point Test for Time Series with Time-Varying Volatilities Based on Support Vector Regression
por: Lee, Sangyeol, et al.
Publicado: (2020) -
Change Point Test for the Conditional Mean of Time Series of Counts Based on Support Vector Regression
por: Lee, Sangyeol, et al.
Publicado: (2021) -
Forecasting and change point test for nonlinear heteroscedastic time series based on support vector regression
por: Wang, HsinKai, et al.
Publicado: (2022) -
Monitoring parameter change for bivariate time series models of counts
por: Lee, Sangyeol, et al.
Publicado: (2023) -
Monitoring Parameter Change for Time Series Models of Counts Based on Minimum Density Power Divergence Estimator
por: Lee, Sangyeol, et al.
Publicado: (2020)