Cargando…
Low Entropy Sub-Networks Prevent the Integration of Metabolomic and Transcriptomic Data
The constantly and rapidly increasing amount of the biological data gained from many different high-throughput experiments opens up new possibilities for data- and model-driven inference. Yet, alongside, emerges a problem of risks related to data integration techniques. The latter are not so widely...
Autores principales: | Gogolewski, Krzysztof, Kostecki, Marcin, Gambin, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712986/ https://www.ncbi.nlm.nih.gov/pubmed/33287006 http://dx.doi.org/10.3390/e22111238 |
Ejemplares similares
-
Inferring Molecular Processes Heterogeneity from Transcriptional Data
por: Gogolewski, Krzysztof, et al.
Publicado: (2017) -
Revised time estimation of the ancestral human chromosome 2 fusion
por: Poszewiecka, Barbara, et al.
Publicado: (2022) -
PhaseDancer: a novel targeted assembler of segmental duplications unravels the complexity of the human chromosome 2 fusion going from 48 to 46 chromosomes in hominin evolution
por: Poszewiecka, Barbara, et al.
Publicado: (2023) -
TADeus2: a web server facilitating the clinical diagnosis by pathogenicity assessment of structural variations disarranging 3D chromatin structure
por: Poszewiecka, Barbara, et al.
Publicado: (2022) -
Data-driven case fatality rate estimation for the primary lineage of SARS-CoV-2 in Poland
por: Gogolewski, Krzysztof, et al.
Publicado: (2022)