Cargando…

Diel-scale temporal dynamics in the abundance and composition of pollinators in the Arctic summer

Our understanding of how pollinator activity varies over short temporal scales is limited because most research on pollination is based on data collected during the day that is then aggregated at a larger temporal scale. To understand how environmental factors affect plant–pollinator interactions, i...

Descripción completa

Detalles Bibliográficos
Autores principales: Zoller, Leana, Bennett, Joanne M., Knight, Tiffany M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713049/
https://www.ncbi.nlm.nih.gov/pubmed/33273673
http://dx.doi.org/10.1038/s41598-020-78165-w
Descripción
Sumario:Our understanding of how pollinator activity varies over short temporal scales is limited because most research on pollination is based on data collected during the day that is then aggregated at a larger temporal scale. To understand how environmental factors affect plant–pollinator interactions, it is critical that studies include the entire diel cycle to examine patterns and processes that cause temporal variations. Further, there is little information from the Arctic, where environmental conditions that influence pollinator activity (e.g. temperature and solar radiation), are less variable across the diel cycle during the summer compared to locations from lower latitudes. We quantified abundance, composition and foraging activity of a pollinator community in Finnish Lapland at a diel scale over two summers, one of which was an extreme heat year. Pollinators showed a robust pattern in daily foraging activity, with peak activity during the day, less to no activity at night, and an absence of typically night active Lepidoptera. Abundance and composition of pollinators differed significantly between the years, possibly in response to the extreme heat in one of the years, which may particularly harm muscid flies. Our results showing strong diel and interannual abundance patterns for several taxa of pollinators in the Arctic summer have important implications for our understanding of temporal dynamics of plant–pollinator interactions.