Cargando…
Identifying signals associated with psychiatric illness utilizing language and images posted to Facebook
Prior research has identified associations between social media activity and psychiatric diagnoses; however, diagnoses are rarely clinically confirmed. Toward the goal of applying novel approaches to improve outcomes, research using real patient data is necessary. We collected 3,404,959 Facebook mes...
Autores principales: | Birnbaum, Michael L., Norel, Raquel, Van Meter, Anna, Ali, Asra F., Arenare, Elizabeth, Eyigoz, Elif, Agurto, Carla, Germano, Nicole, Kane, John M., Cecchi, Guillermo A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713057/ https://www.ncbi.nlm.nih.gov/pubmed/33273468 http://dx.doi.org/10.1038/s41537-020-00125-0 |
Ejemplares similares
-
Acoustic and Facial Features From Clinical Interviews for Machine Learning–Based Psychiatric Diagnosis: Algorithm Development
por: Birnbaum, Michael L, et al.
Publicado: (2022) -
Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook
por: Birnbaum, M. L., et al.
Publicado: (2019) -
Identifying emerging mental illness utilizing search engine activity: A feasibility study
por: Birnbaum, Michael L., et al.
Publicado: (2020) -
Speak and you shall predict: speech at initial cocaine abstinence as a biomarker of long-term drug use behavior
por: Agurto, Carla, et al.
Publicado: (2023) -
Utilizing Machine Learning on Internet Search Activity to Support the Diagnostic Process and Relapse Detection in Young Individuals With Early Psychosis: Feasibility Study
por: Birnbaum, Michael Leo, et al.
Publicado: (2020)