Cargando…

Pan-genome analysis and ancestral state reconstruction of class halobacteria: probability of a new super-order

Halobacteria, a class of Euryarchaeota are extremely halophilic archaea that can adapt to a wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl. It consists of the orders: Halobacteriales, Haloferaciales and Natriabales. Pan-genome analysis of class H...

Descripción completa

Detalles Bibliográficos
Autores principales: Gaba, Sonam, Kumari, Abha, Medema, Marnix, Kaushik, Rajeev
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713125/
https://www.ncbi.nlm.nih.gov/pubmed/33273480
http://dx.doi.org/10.1038/s41598-020-77723-6
Descripción
Sumario:Halobacteria, a class of Euryarchaeota are extremely halophilic archaea that can adapt to a wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl. It consists of the orders: Halobacteriales, Haloferaciales and Natriabales. Pan-genome analysis of class Halobacteria was done to explore the core (300) and variable components (Softcore: 998, Cloud:36531, Shell:11784). The core component revealed genes of replication, transcription, translation and repair, whereas the variable component had a major portion of environmental information processing. The pan-gene matrix was mapped onto the core-gene tree to find the ancestral (44.8%) and derived genes (55.1%) of the Last Common Ancestor of Halobacteria. A High percentage of derived genes along with presence of transformation and conjugation genes indicate the occurrence of horizontal gene transfer during the evolution of Halobacteria. A Core and pan-gene tree were also constructed to infer a phylogeny which implicated on the new super-order comprising of Natrialbales and Halobacteriales.