Cargando…
SkipGNN: predicting molecular interactions with skip-graph networks
Molecular interaction networks are powerful resources for molecular discovery. They are increasingly used with machine learning methods to predict biologically meaningful interactions. While deep learning on graphs has dramatically advanced the prediction prowess, current graph neural network (GNN)...
Autores principales: | Huang, Kexin, Xiao, Cao, Glass, Lucas M., Zitnik, Marinka, Sun, Jimeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713130/ https://www.ncbi.nlm.nih.gov/pubmed/33273494 http://dx.doi.org/10.1038/s41598-020-77766-9 |
Ejemplares similares
-
SumGNN: multi-typed drug interaction prediction via efficient knowledge graph summarization
por: Yu, Yue, et al.
Publicado: (2021) -
DeepPurpose: a deep learning library for drug–target interaction prediction
por: Huang, Kexin, et al.
Publicado: (2020) -
SkipCor: Skip-Mention Coreference Resolution Using Linear-Chain Conditional Random Fields
por: Žitnik, Slavko, et al.
Publicado: (2014) -
Breakfast: To Skip or Not to Skip?
por: Zilberter, Tanya, et al.
Publicado: (2014) -
MolTrans: Molecular Interaction Transformer for drug–target interaction prediction
por: Huang, Kexin, et al.
Publicado: (2020)