Cargando…

Lung squamous cell carcinoma and lung adenocarcinoma differential gene expression regulation through pathways of Notch, Hedgehog, Wnt, and ErbB signalling

Lung malignancies comprise lethal and aggressive tumours that remain the leading cancer-related death cause worldwide. Regarding histological classification, lung squamous cell carcinoma (LUSC) and adenocarcinoma (LUAD) account for the majority of cases. Surgical resection and various combinations o...

Descripción completa

Detalles Bibliográficos
Autores principales: Anusewicz, Dorota, Orzechowska, Magdalena, Bednarek, Andrzej K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713208/
https://www.ncbi.nlm.nih.gov/pubmed/33273537
http://dx.doi.org/10.1038/s41598-020-77284-8
Descripción
Sumario:Lung malignancies comprise lethal and aggressive tumours that remain the leading cancer-related death cause worldwide. Regarding histological classification, lung squamous cell carcinoma (LUSC) and adenocarcinoma (LUAD) account for the majority of cases. Surgical resection and various combinations of chemo- and radiation therapies are the golden standards in the treatment of lung cancers, although the five-year survival rate remains very poor. Notch, Hedgehog, Wnt and Erbb signalling are evolutionarily conserved pathways regulating pivotal cellular processes such as differentiation, proliferation, and angiogenesis during embryogenesis and post-natal life. However, to date, there is no study comprehensively revealing signalling networks of these four pathways in LUSC and LUAD. Therefore, the aim of the present study was the investigation profiles of downstream target genes of pathways that differ between LUSC and LUAD biology. Our results showed a few co-expression modules, identified through weighted gene co-expression network analysis (WGCNA), which significantly differentiated downstream signaling of Notch, ErbB, Hedgehog, and Wnt in LUSC and LUAD. Among co-expressed genes essential regulators of the cell cycle, DNA damage response, apoptosis, and proliferation have been found. Most of them were upregulated in LUSC compared to LUAD. In conclusion, identified downstream networks revealed distinct biological mechanisms underlying cancer development and progression in LUSC and LUAD that may diversify the clinical outcome of the disease.