Cargando…
Characterization and flowability methods for metal powders
With the rise of additive technologies, the characterization of metal powders is increasingly required. There is a need to precisely match the properties of metal powders to a specific machine and to ensure highly consistent production. Therefore, the study aims at a detailed characterization of ten...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713240/ https://www.ncbi.nlm.nih.gov/pubmed/33273528 http://dx.doi.org/10.1038/s41598-020-77974-3 |
Sumario: | With the rise of additive technologies, the characterization of metal powders is increasingly required. There is a need to precisely match the properties of metal powders to a specific machine and to ensure highly consistent production. Therefore, the study aims at a detailed characterization of ten metal powders (Metal powder 316 L, Zn, Sn, Al, Cu, Mn, Fe, Bronze, Ti and Mo powder), for which the particle size distribution, morphology, static and dynamic angle of repose and the effective internal friction angle (AIFE) were determined. The AIFE parameter and flow index were determined from three commonly used rotary shear devices: The computer-controlled Ring Shear Tester RST-01. pc, the Brookfield PFT Powder Flow Tester and the FT4 Powder rheometer. The results showed that the values for the device of one manufacturer did not fully correspond to the values of another one. The flow characteristics of the metal powders were quantified from the particle size distribution data, static angle of repose, and AIFE data. According to the particle size distribution and angle of repose (AOR), 50% of the tested metal powders fell into the free-flowing mode. According to the evaluation of AIFE, 20% of the samples fell into the lower area. Based on the flow indexes calculated from the measurements of the shear devices used, 100% (RST-01.pc), 70% (PFT) and 50% (FT4) of the samples were included in the free-flowing category. When comparing the results, attention should be paid not only to the nature of the material, but also to the methodology and equipment used. A comparison of methodologies revealed similarities in the changing behavior of the different metal powders. A comparison of effective angles of AIFE and static AOR was shown, and a hypothesis of the conversion relation was derived. |
---|