Cargando…
Identifications and classifications of human locomotion using Rayleigh-enhanced distributed fiber acoustic sensors with deep neural networks
This paper reports on the use of machine learning to delineate data harnessed by fiber-optic distributed acoustic sensors (DAS) using fiber with enhanced Rayleigh backscattering to recognize vibration events induced by human locomotion. The DAS used in this work is based on homodyne phase-sensitive...
Autores principales: | Peng, Zhaoqiang, Wen, Hongqiao, Jian, Jianan, Gribok, Andrei, Wang, Mohan, Huang, Sheng, Liu, Hu, Mao, Zhi-Hong, Chen, Kevin P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713295/ https://www.ncbi.nlm.nih.gov/pubmed/33273503 http://dx.doi.org/10.1038/s41598-020-77147-2 |
Ejemplares similares
-
Enhanced Optical Fiber for Distributed Acoustic Sensing beyond the Limits of Rayleigh Backscattering
por: Westbrook, Paul S., et al.
Publicado: (2020) -
Rayleigh Wave Calibration of Acoustic Emission Sensors and Ultrasonic Transducers
por: Ono, Kanji
Publicado: (2019) -
Rayleigh-Based Distributed Optical Fiber Sensing
por: Palmieri, Luca, et al.
Publicado: (2022) -
Performance of Rayleigh-Based Distributed Optical Fiber Sensors Bonded to Reinforcing Bars in Bending
por: Bado, Mattia Francesco, et al.
Publicado: (2018) -
Optical Fiber–Based Continuous Liquid Level Sensor Based on Rayleigh Backscattering
por: Chi, Xingqiang, et al.
Publicado: (2022)