Cargando…
Layer-wise relevance propagation of InteractionNet explains protein–ligand interactions at the atom level
Development of deep-learning models for intermolecular noncovalent (NC) interactions between proteins and ligands has great potential in the chemical and pharmaceutical tasks, including structure–activity relationship and drug design. It still remains an open question how to convert the three-dimens...
Autores principales: | Cho, Hyeoncheol, Lee, Eok Kyun, Choi, Insung S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713352/ https://www.ncbi.nlm.nih.gov/pubmed/33273642 http://dx.doi.org/10.1038/s41598-020-78169-6 |
Ejemplares similares
-
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
por: Bach, Sebastian, et al.
Publicado: (2015) -
Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification
por: Böhle, Moritz, et al.
Publicado: (2019) -
Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation
por: Eitel, Fabian, et al.
Publicado: (2019) -
Modelling and identification of characteristic kinematic features preceding freezing of gait with convolutional neural networks and layer-wise relevance propagation
por: Filtjens, Benjamin, et al.
Publicado: (2021) -
The effects of layer-wise relevance propagation-based feature selection for EEG classification: a comparative study on multiple datasets
por: Nam, Hyeonyeong, et al.
Publicado: (2023)