Cargando…
A residual dense network assisted sparse view reconstruction for breast computed tomography
To develop and investigate a deep learning approach that uses sparse-view acquisition in dedicated breast computed tomography for radiation dose reduction, we propose a framework that combines 3D sparse-view cone-beam acquisition with a multi-slice residual dense network (MS-RDN) reconstruction. Pro...
Autores principales: | Fu, Zhiyang, Tseng, Hsin Wu, Vedantham, Srinivasan, Karellas, Andrew, Bilgin, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713379/ https://www.ncbi.nlm.nih.gov/pubmed/33273541 http://dx.doi.org/10.1038/s41598-020-77923-0 |
Ejemplares similares
-
Dedicated Cone-Beam Breast CT: Reproducibility of Volumetric Glandular Fraction with Advanced Image Reconstruction Methods
por: Vedantham, Srinivasan, et al.
Publicado: (2023) -
Towards understanding residual and dilated dense neural networks via convolutional sparse coding
por: Zhang, Zhiyang, et al.
Publicado: (2020) -
Attention-based dual-branch deep network for sparse-view computed tomography image reconstruction
por: Gao, Xiang, et al.
Publicado: (2023) -
Sparse-Coding-Based Computed Tomography Image Reconstruction
por: Yoon, Sang Min, et al.
Publicado: (2013) -
Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration
por: Song, Xianlin, et al.
Publicado: (2023)