Cargando…

Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study

PURPOSE: A large proportion of patients with cancer suffer from breakthrough cancer pain (BTcP). Several unmet clinical needs concerning BTcP treatment, such as optimal opioid dosages, are being investigated. In this analysis the hypothesis, we explore with an unsupervised learning algorithm whether...

Descripción completa

Detalles Bibliográficos
Autores principales: Pantano, Francesco, Manca, Paolo, Armento, Grazia, Zeppola, Tea, Onorato, Angelo, Iuliani, Michele, Simonetti, Sonia, Vincenzi, Bruno, Santini, Daniele, Mercadante, Sebastiano, Marchetti, Paolo, Cuomo, Arturo, Caraceni, Augusto, Mediati, Rocco Domenico, Vellucci, Renato, Mammucari, Massimo, Natoli, Silvia, Lazzari, Marzia, Dauri, Mario, Adile, Claudio, Airoldi, Mario, Azzarello, Giuseppe, Blasi, Livio, Chiurazzi, Bruno, Degiovanni, Daniela, Fusco, Flavio, Guardamagna, Vittorio, Liguori, Simeone, Palermo, Loredana, Mameli, Sergio, Masedu, Francesco, Mazzei, Teresita, Melotti, Rita Maria, Menardo, Valentino, Miotti, Danilo, Moroso, Stefano, Pascoletti, Gaetano, De Santis, Stefano, Orsetti, Remo, Papa, Alfonso, Ricci, Sergio, Scelzi, Elvira, Sofia, Michele, Aielli, Federica, Valle, Alessandro, Tonini, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Clinical Oncology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713587/
https://www.ncbi.nlm.nih.gov/pubmed/33283139
http://dx.doi.org/10.1200/PO.20.00158
_version_ 1783618590511988736
author Pantano, Francesco
Manca, Paolo
Armento, Grazia
Zeppola, Tea
Onorato, Angelo
Iuliani, Michele
Simonetti, Sonia
Vincenzi, Bruno
Santini, Daniele
Mercadante, Sebastiano
Marchetti, Paolo
Cuomo, Arturo
Caraceni, Augusto
Mediati, Rocco Domenico
Vellucci, Renato
Mammucari, Massimo
Natoli, Silvia
Lazzari, Marzia
Dauri, Mario
Adile, Claudio
Airoldi, Mario
Azzarello, Giuseppe
Blasi, Livio
Chiurazzi, Bruno
Degiovanni, Daniela
Fusco, Flavio
Guardamagna, Vittorio
Liguori, Simeone
Palermo, Loredana
Mameli, Sergio
Masedu, Francesco
Mazzei, Teresita
Melotti, Rita Maria
Menardo, Valentino
Miotti, Danilo
Moroso, Stefano
Pascoletti, Gaetano
De Santis, Stefano
Orsetti, Remo
Papa, Alfonso
Ricci, Sergio
Scelzi, Elvira
Sofia, Michele
Aielli, Federica
Valle, Alessandro
Tonini, Giuseppe
author_facet Pantano, Francesco
Manca, Paolo
Armento, Grazia
Zeppola, Tea
Onorato, Angelo
Iuliani, Michele
Simonetti, Sonia
Vincenzi, Bruno
Santini, Daniele
Mercadante, Sebastiano
Marchetti, Paolo
Cuomo, Arturo
Caraceni, Augusto
Mediati, Rocco Domenico
Vellucci, Renato
Mammucari, Massimo
Natoli, Silvia
Lazzari, Marzia
Dauri, Mario
Adile, Claudio
Airoldi, Mario
Azzarello, Giuseppe
Blasi, Livio
Chiurazzi, Bruno
Degiovanni, Daniela
Fusco, Flavio
Guardamagna, Vittorio
Liguori, Simeone
Palermo, Loredana
Mameli, Sergio
Masedu, Francesco
Mazzei, Teresita
Melotti, Rita Maria
Menardo, Valentino
Miotti, Danilo
Moroso, Stefano
Pascoletti, Gaetano
De Santis, Stefano
Orsetti, Remo
Papa, Alfonso
Ricci, Sergio
Scelzi, Elvira
Sofia, Michele
Aielli, Federica
Valle, Alessandro
Tonini, Giuseppe
author_sort Pantano, Francesco
collection PubMed
description PURPOSE: A large proportion of patients with cancer suffer from breakthrough cancer pain (BTcP). Several unmet clinical needs concerning BTcP treatment, such as optimal opioid dosages, are being investigated. In this analysis the hypothesis, we explore with an unsupervised learning algorithm whether distinct subtypes of BTcP exist and whether they can provide new insights into clinical practice. METHODS: Partitioning around a k-medoids algorithm on a large data set of patients with BTcP, previously collected by the Italian Oncologic Pain Survey group, was used to identify possible subgroups of BTcP. Resulting clusters were analyzed in terms of BTcP therapy satisfaction, clinical features, and use of basal pain and rapid-onset opioids. Opioid dosages were converted to a unique scale and the BTcP opioids-to-basal pain opioids ratio was calculated for each patient. We used polynomial logistic regression to catch nonlinear relationships between therapy satisfaction and opioid use. RESULTS: Our algorithm identified 12 distinct BTcP clusters. Optimal BTcP opioids-to-basal pain opioids ratios differed across the clusters, ranging from 15% to 50%. The majority of clusters were linked to a peculiar association of certain drugs with therapy satisfaction or dissatisfaction. A free online tool was created for new patients’ cluster computation to validate these clusters in future studies and provide handy indications for personalized BTcP therapy. CONCLUSION: This work proposes a classification for BTcP and identifies subgroups of patients with unique efficacy of different pain medications. This work supports the theory that the optimal dose of BTcP opioids depends on the dose of basal opioids and identifies novel values that are possibly useful for future trials. These results will allow us to target BTcP therapy on the basis of patient characteristics and to define a precision medicine strategy also for supportive care.
format Online
Article
Text
id pubmed-7713587
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society of Clinical Oncology
record_format MEDLINE/PubMed
spelling pubmed-77135872020-12-03 Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study Pantano, Francesco Manca, Paolo Armento, Grazia Zeppola, Tea Onorato, Angelo Iuliani, Michele Simonetti, Sonia Vincenzi, Bruno Santini, Daniele Mercadante, Sebastiano Marchetti, Paolo Cuomo, Arturo Caraceni, Augusto Mediati, Rocco Domenico Vellucci, Renato Mammucari, Massimo Natoli, Silvia Lazzari, Marzia Dauri, Mario Adile, Claudio Airoldi, Mario Azzarello, Giuseppe Blasi, Livio Chiurazzi, Bruno Degiovanni, Daniela Fusco, Flavio Guardamagna, Vittorio Liguori, Simeone Palermo, Loredana Mameli, Sergio Masedu, Francesco Mazzei, Teresita Melotti, Rita Maria Menardo, Valentino Miotti, Danilo Moroso, Stefano Pascoletti, Gaetano De Santis, Stefano Orsetti, Remo Papa, Alfonso Ricci, Sergio Scelzi, Elvira Sofia, Michele Aielli, Federica Valle, Alessandro Tonini, Giuseppe JCO Precis Oncol ORIGINAL REPORTS PURPOSE: A large proportion of patients with cancer suffer from breakthrough cancer pain (BTcP). Several unmet clinical needs concerning BTcP treatment, such as optimal opioid dosages, are being investigated. In this analysis the hypothesis, we explore with an unsupervised learning algorithm whether distinct subtypes of BTcP exist and whether they can provide new insights into clinical practice. METHODS: Partitioning around a k-medoids algorithm on a large data set of patients with BTcP, previously collected by the Italian Oncologic Pain Survey group, was used to identify possible subgroups of BTcP. Resulting clusters were analyzed in terms of BTcP therapy satisfaction, clinical features, and use of basal pain and rapid-onset opioids. Opioid dosages were converted to a unique scale and the BTcP opioids-to-basal pain opioids ratio was calculated for each patient. We used polynomial logistic regression to catch nonlinear relationships between therapy satisfaction and opioid use. RESULTS: Our algorithm identified 12 distinct BTcP clusters. Optimal BTcP opioids-to-basal pain opioids ratios differed across the clusters, ranging from 15% to 50%. The majority of clusters were linked to a peculiar association of certain drugs with therapy satisfaction or dissatisfaction. A free online tool was created for new patients’ cluster computation to validate these clusters in future studies and provide handy indications for personalized BTcP therapy. CONCLUSION: This work proposes a classification for BTcP and identifies subgroups of patients with unique efficacy of different pain medications. This work supports the theory that the optimal dose of BTcP opioids depends on the dose of basal opioids and identifies novel values that are possibly useful for future trials. These results will allow us to target BTcP therapy on the basis of patient characteristics and to define a precision medicine strategy also for supportive care. American Society of Clinical Oncology 2020-11-04 /pmc/articles/PMC7713587/ /pubmed/33283139 http://dx.doi.org/10.1200/PO.20.00158 Text en © 2020 by American Society of Clinical Oncology https://creativecommons.org/licenses/by/4.0/ Licensed under the Creative Commons Attribution 4.0 License: https://creativecommons.org/licenses/by/4.0/
spellingShingle ORIGINAL REPORTS
Pantano, Francesco
Manca, Paolo
Armento, Grazia
Zeppola, Tea
Onorato, Angelo
Iuliani, Michele
Simonetti, Sonia
Vincenzi, Bruno
Santini, Daniele
Mercadante, Sebastiano
Marchetti, Paolo
Cuomo, Arturo
Caraceni, Augusto
Mediati, Rocco Domenico
Vellucci, Renato
Mammucari, Massimo
Natoli, Silvia
Lazzari, Marzia
Dauri, Mario
Adile, Claudio
Airoldi, Mario
Azzarello, Giuseppe
Blasi, Livio
Chiurazzi, Bruno
Degiovanni, Daniela
Fusco, Flavio
Guardamagna, Vittorio
Liguori, Simeone
Palermo, Loredana
Mameli, Sergio
Masedu, Francesco
Mazzei, Teresita
Melotti, Rita Maria
Menardo, Valentino
Miotti, Danilo
Moroso, Stefano
Pascoletti, Gaetano
De Santis, Stefano
Orsetti, Remo
Papa, Alfonso
Ricci, Sergio
Scelzi, Elvira
Sofia, Michele
Aielli, Federica
Valle, Alessandro
Tonini, Giuseppe
Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study
title Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study
title_full Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study
title_fullStr Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study
title_full_unstemmed Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study
title_short Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study
title_sort breakthrough cancer pain clinical features and differential opioids response: a machine learning approach in patients with cancer from the iops-ms study
topic ORIGINAL REPORTS
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713587/
https://www.ncbi.nlm.nih.gov/pubmed/33283139
http://dx.doi.org/10.1200/PO.20.00158
work_keys_str_mv AT pantanofrancesco breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT mancapaolo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT armentograzia breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT zeppolatea breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT onoratoangelo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT iulianimichele breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT simonettisonia breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT vincenzibruno breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT santinidaniele breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT mercadantesebastiano breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT marchettipaolo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT cuomoarturo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT caraceniaugusto breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT mediatiroccodomenico breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT velluccirenato breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT mammucarimassimo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT natolisilvia breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT lazzarimarzia breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT daurimario breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT adileclaudio breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT airoldimario breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT azzarellogiuseppe breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT blasilivio breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT chiurazzibruno breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT degiovannidaniela breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT fuscoflavio breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT guardamagnavittorio breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT liguorisimeone breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT palermoloredana breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT mamelisergio breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT masedufrancesco breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT mazzeiteresita breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT melottiritamaria breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT menardovalentino breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT miottidanilo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT morosostefano breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT pascolettigaetano breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT desantisstefano breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT orsettiremo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT papaalfonso breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT riccisergio breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT scelzielvira breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT sofiamichele breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT aiellifederica breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT vallealessandro breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy
AT toninigiuseppe breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy