Cargando…
Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study
PURPOSE: A large proportion of patients with cancer suffer from breakthrough cancer pain (BTcP). Several unmet clinical needs concerning BTcP treatment, such as optimal opioid dosages, are being investigated. In this analysis the hypothesis, we explore with an unsupervised learning algorithm whether...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713587/ https://www.ncbi.nlm.nih.gov/pubmed/33283139 http://dx.doi.org/10.1200/PO.20.00158 |
_version_ | 1783618590511988736 |
---|---|
author | Pantano, Francesco Manca, Paolo Armento, Grazia Zeppola, Tea Onorato, Angelo Iuliani, Michele Simonetti, Sonia Vincenzi, Bruno Santini, Daniele Mercadante, Sebastiano Marchetti, Paolo Cuomo, Arturo Caraceni, Augusto Mediati, Rocco Domenico Vellucci, Renato Mammucari, Massimo Natoli, Silvia Lazzari, Marzia Dauri, Mario Adile, Claudio Airoldi, Mario Azzarello, Giuseppe Blasi, Livio Chiurazzi, Bruno Degiovanni, Daniela Fusco, Flavio Guardamagna, Vittorio Liguori, Simeone Palermo, Loredana Mameli, Sergio Masedu, Francesco Mazzei, Teresita Melotti, Rita Maria Menardo, Valentino Miotti, Danilo Moroso, Stefano Pascoletti, Gaetano De Santis, Stefano Orsetti, Remo Papa, Alfonso Ricci, Sergio Scelzi, Elvira Sofia, Michele Aielli, Federica Valle, Alessandro Tonini, Giuseppe |
author_facet | Pantano, Francesco Manca, Paolo Armento, Grazia Zeppola, Tea Onorato, Angelo Iuliani, Michele Simonetti, Sonia Vincenzi, Bruno Santini, Daniele Mercadante, Sebastiano Marchetti, Paolo Cuomo, Arturo Caraceni, Augusto Mediati, Rocco Domenico Vellucci, Renato Mammucari, Massimo Natoli, Silvia Lazzari, Marzia Dauri, Mario Adile, Claudio Airoldi, Mario Azzarello, Giuseppe Blasi, Livio Chiurazzi, Bruno Degiovanni, Daniela Fusco, Flavio Guardamagna, Vittorio Liguori, Simeone Palermo, Loredana Mameli, Sergio Masedu, Francesco Mazzei, Teresita Melotti, Rita Maria Menardo, Valentino Miotti, Danilo Moroso, Stefano Pascoletti, Gaetano De Santis, Stefano Orsetti, Remo Papa, Alfonso Ricci, Sergio Scelzi, Elvira Sofia, Michele Aielli, Federica Valle, Alessandro Tonini, Giuseppe |
author_sort | Pantano, Francesco |
collection | PubMed |
description | PURPOSE: A large proportion of patients with cancer suffer from breakthrough cancer pain (BTcP). Several unmet clinical needs concerning BTcP treatment, such as optimal opioid dosages, are being investigated. In this analysis the hypothesis, we explore with an unsupervised learning algorithm whether distinct subtypes of BTcP exist and whether they can provide new insights into clinical practice. METHODS: Partitioning around a k-medoids algorithm on a large data set of patients with BTcP, previously collected by the Italian Oncologic Pain Survey group, was used to identify possible subgroups of BTcP. Resulting clusters were analyzed in terms of BTcP therapy satisfaction, clinical features, and use of basal pain and rapid-onset opioids. Opioid dosages were converted to a unique scale and the BTcP opioids-to-basal pain opioids ratio was calculated for each patient. We used polynomial logistic regression to catch nonlinear relationships between therapy satisfaction and opioid use. RESULTS: Our algorithm identified 12 distinct BTcP clusters. Optimal BTcP opioids-to-basal pain opioids ratios differed across the clusters, ranging from 15% to 50%. The majority of clusters were linked to a peculiar association of certain drugs with therapy satisfaction or dissatisfaction. A free online tool was created for new patients’ cluster computation to validate these clusters in future studies and provide handy indications for personalized BTcP therapy. CONCLUSION: This work proposes a classification for BTcP and identifies subgroups of patients with unique efficacy of different pain medications. This work supports the theory that the optimal dose of BTcP opioids depends on the dose of basal opioids and identifies novel values that are possibly useful for future trials. These results will allow us to target BTcP therapy on the basis of patient characteristics and to define a precision medicine strategy also for supportive care. |
format | Online Article Text |
id | pubmed-7713587 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society of Clinical Oncology |
record_format | MEDLINE/PubMed |
spelling | pubmed-77135872020-12-03 Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study Pantano, Francesco Manca, Paolo Armento, Grazia Zeppola, Tea Onorato, Angelo Iuliani, Michele Simonetti, Sonia Vincenzi, Bruno Santini, Daniele Mercadante, Sebastiano Marchetti, Paolo Cuomo, Arturo Caraceni, Augusto Mediati, Rocco Domenico Vellucci, Renato Mammucari, Massimo Natoli, Silvia Lazzari, Marzia Dauri, Mario Adile, Claudio Airoldi, Mario Azzarello, Giuseppe Blasi, Livio Chiurazzi, Bruno Degiovanni, Daniela Fusco, Flavio Guardamagna, Vittorio Liguori, Simeone Palermo, Loredana Mameli, Sergio Masedu, Francesco Mazzei, Teresita Melotti, Rita Maria Menardo, Valentino Miotti, Danilo Moroso, Stefano Pascoletti, Gaetano De Santis, Stefano Orsetti, Remo Papa, Alfonso Ricci, Sergio Scelzi, Elvira Sofia, Michele Aielli, Federica Valle, Alessandro Tonini, Giuseppe JCO Precis Oncol ORIGINAL REPORTS PURPOSE: A large proportion of patients with cancer suffer from breakthrough cancer pain (BTcP). Several unmet clinical needs concerning BTcP treatment, such as optimal opioid dosages, are being investigated. In this analysis the hypothesis, we explore with an unsupervised learning algorithm whether distinct subtypes of BTcP exist and whether they can provide new insights into clinical practice. METHODS: Partitioning around a k-medoids algorithm on a large data set of patients with BTcP, previously collected by the Italian Oncologic Pain Survey group, was used to identify possible subgroups of BTcP. Resulting clusters were analyzed in terms of BTcP therapy satisfaction, clinical features, and use of basal pain and rapid-onset opioids. Opioid dosages were converted to a unique scale and the BTcP opioids-to-basal pain opioids ratio was calculated for each patient. We used polynomial logistic regression to catch nonlinear relationships between therapy satisfaction and opioid use. RESULTS: Our algorithm identified 12 distinct BTcP clusters. Optimal BTcP opioids-to-basal pain opioids ratios differed across the clusters, ranging from 15% to 50%. The majority of clusters were linked to a peculiar association of certain drugs with therapy satisfaction or dissatisfaction. A free online tool was created for new patients’ cluster computation to validate these clusters in future studies and provide handy indications for personalized BTcP therapy. CONCLUSION: This work proposes a classification for BTcP and identifies subgroups of patients with unique efficacy of different pain medications. This work supports the theory that the optimal dose of BTcP opioids depends on the dose of basal opioids and identifies novel values that are possibly useful for future trials. These results will allow us to target BTcP therapy on the basis of patient characteristics and to define a precision medicine strategy also for supportive care. American Society of Clinical Oncology 2020-11-04 /pmc/articles/PMC7713587/ /pubmed/33283139 http://dx.doi.org/10.1200/PO.20.00158 Text en © 2020 by American Society of Clinical Oncology https://creativecommons.org/licenses/by/4.0/ Licensed under the Creative Commons Attribution 4.0 License: https://creativecommons.org/licenses/by/4.0/ |
spellingShingle | ORIGINAL REPORTS Pantano, Francesco Manca, Paolo Armento, Grazia Zeppola, Tea Onorato, Angelo Iuliani, Michele Simonetti, Sonia Vincenzi, Bruno Santini, Daniele Mercadante, Sebastiano Marchetti, Paolo Cuomo, Arturo Caraceni, Augusto Mediati, Rocco Domenico Vellucci, Renato Mammucari, Massimo Natoli, Silvia Lazzari, Marzia Dauri, Mario Adile, Claudio Airoldi, Mario Azzarello, Giuseppe Blasi, Livio Chiurazzi, Bruno Degiovanni, Daniela Fusco, Flavio Guardamagna, Vittorio Liguori, Simeone Palermo, Loredana Mameli, Sergio Masedu, Francesco Mazzei, Teresita Melotti, Rita Maria Menardo, Valentino Miotti, Danilo Moroso, Stefano Pascoletti, Gaetano De Santis, Stefano Orsetti, Remo Papa, Alfonso Ricci, Sergio Scelzi, Elvira Sofia, Michele Aielli, Federica Valle, Alessandro Tonini, Giuseppe Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study |
title | Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study |
title_full | Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study |
title_fullStr | Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study |
title_full_unstemmed | Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study |
title_short | Breakthrough Cancer Pain Clinical Features and Differential Opioids Response: A Machine Learning Approach in Patients With Cancer From the IOPS-MS Study |
title_sort | breakthrough cancer pain clinical features and differential opioids response: a machine learning approach in patients with cancer from the iops-ms study |
topic | ORIGINAL REPORTS |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713587/ https://www.ncbi.nlm.nih.gov/pubmed/33283139 http://dx.doi.org/10.1200/PO.20.00158 |
work_keys_str_mv | AT pantanofrancesco breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT mancapaolo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT armentograzia breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT zeppolatea breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT onoratoangelo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT iulianimichele breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT simonettisonia breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT vincenzibruno breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT santinidaniele breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT mercadantesebastiano breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT marchettipaolo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT cuomoarturo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT caraceniaugusto breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT mediatiroccodomenico breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT velluccirenato breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT mammucarimassimo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT natolisilvia breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT lazzarimarzia breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT daurimario breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT adileclaudio breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT airoldimario breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT azzarellogiuseppe breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT blasilivio breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT chiurazzibruno breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT degiovannidaniela breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT fuscoflavio breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT guardamagnavittorio breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT liguorisimeone breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT palermoloredana breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT mamelisergio breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT masedufrancesco breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT mazzeiteresita breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT melottiritamaria breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT menardovalentino breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT miottidanilo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT morosostefano breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT pascolettigaetano breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT desantisstefano breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT orsettiremo breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT papaalfonso breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT riccisergio breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT scelzielvira breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT sofiamichele breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT aiellifederica breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT vallealessandro breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy AT toninigiuseppe breakthroughcancerpainclinicalfeaturesanddifferentialopioidsresponseamachinelearningapproachinpatientswithcancerfromtheiopsmsstudy |