Cargando…
Robust and simplified machine learning identification of pitfall trap‐collected ground beetles at the continental scale
1. Insect populations are changing rapidly, and monitoring these changes is essential for understanding the causes and consequences of such shifts. However, large‐scale insect identification projects are time‐consuming and expensive when done solely by human identifiers. Machine learning offers a po...
Autores principales: | Blair, Jarrett, Weiser, Michael D., Kaspari, Michael, Miller, Matthew, Siler, Cameron, Marshall, Katie E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713910/ https://www.ncbi.nlm.nih.gov/pubmed/33304524 http://dx.doi.org/10.1002/ece3.6905 |
Ejemplares similares
-
Optimising Bait for Pitfall Trapping of Amazonian Dung Beetles (Coleoptera: Scarabaeinae)
por: Marsh, Charles J., et al.
Publicado: (2013) -
Recording fine‐scale movement of ground beetles by two methods: Potentials and methodological pitfalls
por: Růžičková, Jana, et al.
Publicado: (2021) -
Cave-adapted beetles from continental Portugal
por: Reboleira, Ana Sofia P. S., et al.
Publicado: (2021) -
A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground‐active arthropod biodiversity
por: Brown, Grant R., et al.
Publicado: (2016) -
Skipping on uneven ground: trailing leg adjustments simplify control and enhance robustness
por: Müller, Roy, et al.
Publicado: (2018)