Cargando…
Bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects
Many insect species rely on the polarization properties of object-reflected light for vital tasks like water or host detection. Unfortunately, typical glass-encapsulated photovoltaic modules, which are expected to cover increasingly large surfaces in the coming years, inadvertently attract various s...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714120/ https://www.ncbi.nlm.nih.gov/pubmed/33270747 http://dx.doi.org/10.1371/journal.pone.0243296 |
_version_ | 1783618685537091584 |
---|---|
author | Fritz, Benjamin Horváth, Gábor Hünig, Ruben Pereszlényi, Ádám Egri, Ádám Guttmann, Markus Schneider, Marc Lemmer, Uli Kriska, György Gomard, Guillaume |
author_facet | Fritz, Benjamin Horváth, Gábor Hünig, Ruben Pereszlényi, Ádám Egri, Ádám Guttmann, Markus Schneider, Marc Lemmer, Uli Kriska, György Gomard, Guillaume |
author_sort | Fritz, Benjamin |
collection | PubMed |
description | Many insect species rely on the polarization properties of object-reflected light for vital tasks like water or host detection. Unfortunately, typical glass-encapsulated photovoltaic modules, which are expected to cover increasingly large surfaces in the coming years, inadvertently attract various species of water-seeking aquatic insects by the horizontally polarized light they reflect. Such polarized light pollution can be extremely harmful to the entomofauna if polarotactic aquatic insects are trapped by this attractive light signal and perish before reproduction, or if they lay their eggs in unsuitable locations. Textured photovoltaic cover layers are usually engineered to maximize sunlight-harvesting, without taking into consideration their impact on polarized light pollution. The goal of the present study is therefore to experimentally and computationally assess the influence of the cover layer topography on polarized light pollution. By conducting field experiments with polarotactic horseflies (Diptera: Tabanidae) and a mayfly species (Ephemeroptera: Ephemera danica), we demonstrate that bioreplicated cover layers (here obtained by directly copying the surface microtexture of rose petals) were almost unattractive to these species, which is indicative of reduced polarized light pollution. Relative to a planar cover layer, we find that, for the examined aquatic species, the bioreplicated texture can greatly reduce the numbers of landings. This observation is further analyzed and explained by means of imaging polarimetry and ray-tracing simulations. The results pave the way to novel photovoltaic cover layers, the interface of which can be designed to improve sunlight conversion efficiency while minimizing their detrimental influence on the ecology and conservation of polarotactic aquatic insects. |
format | Online Article Text |
id | pubmed-7714120 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-77141202020-12-09 Bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects Fritz, Benjamin Horváth, Gábor Hünig, Ruben Pereszlényi, Ádám Egri, Ádám Guttmann, Markus Schneider, Marc Lemmer, Uli Kriska, György Gomard, Guillaume PLoS One Research Article Many insect species rely on the polarization properties of object-reflected light for vital tasks like water or host detection. Unfortunately, typical glass-encapsulated photovoltaic modules, which are expected to cover increasingly large surfaces in the coming years, inadvertently attract various species of water-seeking aquatic insects by the horizontally polarized light they reflect. Such polarized light pollution can be extremely harmful to the entomofauna if polarotactic aquatic insects are trapped by this attractive light signal and perish before reproduction, or if they lay their eggs in unsuitable locations. Textured photovoltaic cover layers are usually engineered to maximize sunlight-harvesting, without taking into consideration their impact on polarized light pollution. The goal of the present study is therefore to experimentally and computationally assess the influence of the cover layer topography on polarized light pollution. By conducting field experiments with polarotactic horseflies (Diptera: Tabanidae) and a mayfly species (Ephemeroptera: Ephemera danica), we demonstrate that bioreplicated cover layers (here obtained by directly copying the surface microtexture of rose petals) were almost unattractive to these species, which is indicative of reduced polarized light pollution. Relative to a planar cover layer, we find that, for the examined aquatic species, the bioreplicated texture can greatly reduce the numbers of landings. This observation is further analyzed and explained by means of imaging polarimetry and ray-tracing simulations. The results pave the way to novel photovoltaic cover layers, the interface of which can be designed to improve sunlight conversion efficiency while minimizing their detrimental influence on the ecology and conservation of polarotactic aquatic insects. Public Library of Science 2020-12-03 /pmc/articles/PMC7714120/ /pubmed/33270747 http://dx.doi.org/10.1371/journal.pone.0243296 Text en © 2020 Fritz et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Fritz, Benjamin Horváth, Gábor Hünig, Ruben Pereszlényi, Ádám Egri, Ádám Guttmann, Markus Schneider, Marc Lemmer, Uli Kriska, György Gomard, Guillaume Bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects |
title | Bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects |
title_full | Bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects |
title_fullStr | Bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects |
title_full_unstemmed | Bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects |
title_short | Bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects |
title_sort | bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714120/ https://www.ncbi.nlm.nih.gov/pubmed/33270747 http://dx.doi.org/10.1371/journal.pone.0243296 |
work_keys_str_mv | AT fritzbenjamin bioreplicatedcoatingsforphotovoltaicsolarpanelsnearlyeliminatelightpollutionthatharmspolarotacticinsects AT horvathgabor bioreplicatedcoatingsforphotovoltaicsolarpanelsnearlyeliminatelightpollutionthatharmspolarotacticinsects AT hunigruben bioreplicatedcoatingsforphotovoltaicsolarpanelsnearlyeliminatelightpollutionthatharmspolarotacticinsects AT pereszlenyiadam bioreplicatedcoatingsforphotovoltaicsolarpanelsnearlyeliminatelightpollutionthatharmspolarotacticinsects AT egriadam bioreplicatedcoatingsforphotovoltaicsolarpanelsnearlyeliminatelightpollutionthatharmspolarotacticinsects AT guttmannmarkus bioreplicatedcoatingsforphotovoltaicsolarpanelsnearlyeliminatelightpollutionthatharmspolarotacticinsects AT schneidermarc bioreplicatedcoatingsforphotovoltaicsolarpanelsnearlyeliminatelightpollutionthatharmspolarotacticinsects AT lemmeruli bioreplicatedcoatingsforphotovoltaicsolarpanelsnearlyeliminatelightpollutionthatharmspolarotacticinsects AT kriskagyorgy bioreplicatedcoatingsforphotovoltaicsolarpanelsnearlyeliminatelightpollutionthatharmspolarotacticinsects AT gomardguillaume bioreplicatedcoatingsforphotovoltaicsolarpanelsnearlyeliminatelightpollutionthatharmspolarotacticinsects |