Cargando…

Estimating the real burden of disease under a pandemic situation: The SARS-CoV2 case

The present paper introduces a new model used to study and analyse the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) epidemic-reported-data from Spain. This is a Hidden Markov Model whose hidden layer is a regeneration process with Poisson immigration, Po-INAR(1), together with a mecha...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández-Fontelo, Amanda, Moriña, David, Cabaña, Alejandra, Arratia, Argimiro, Puig, Pere
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714127/
https://www.ncbi.nlm.nih.gov/pubmed/33270713
http://dx.doi.org/10.1371/journal.pone.0242956
_version_ 1783618687177064448
author Fernández-Fontelo, Amanda
Moriña, David
Cabaña, Alejandra
Arratia, Argimiro
Puig, Pere
author_facet Fernández-Fontelo, Amanda
Moriña, David
Cabaña, Alejandra
Arratia, Argimiro
Puig, Pere
author_sort Fernández-Fontelo, Amanda
collection PubMed
description The present paper introduces a new model used to study and analyse the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) epidemic-reported-data from Spain. This is a Hidden Markov Model whose hidden layer is a regeneration process with Poisson immigration, Po-INAR(1), together with a mechanism that allows the estimation of the under-reporting in non-stationary count time series. A novelty of the model is that the expectation of the unobserved process’s innovations is a time-dependent function defined in such a way that information about the spread of an epidemic, as modelled through a Susceptible-Infectious-Removed dynamical system, is incorporated into the model. In addition, the parameter controlling the intensity of the under-reporting is also made to vary with time to adjust to possible seasonality or trend in the data. Maximum likelihood methods are used to estimate the parameters of the model.
format Online
Article
Text
id pubmed-7714127
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-77141272020-12-09 Estimating the real burden of disease under a pandemic situation: The SARS-CoV2 case Fernández-Fontelo, Amanda Moriña, David Cabaña, Alejandra Arratia, Argimiro Puig, Pere PLoS One Research Article The present paper introduces a new model used to study and analyse the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) epidemic-reported-data from Spain. This is a Hidden Markov Model whose hidden layer is a regeneration process with Poisson immigration, Po-INAR(1), together with a mechanism that allows the estimation of the under-reporting in non-stationary count time series. A novelty of the model is that the expectation of the unobserved process’s innovations is a time-dependent function defined in such a way that information about the spread of an epidemic, as modelled through a Susceptible-Infectious-Removed dynamical system, is incorporated into the model. In addition, the parameter controlling the intensity of the under-reporting is also made to vary with time to adjust to possible seasonality or trend in the data. Maximum likelihood methods are used to estimate the parameters of the model. Public Library of Science 2020-12-03 /pmc/articles/PMC7714127/ /pubmed/33270713 http://dx.doi.org/10.1371/journal.pone.0242956 Text en © 2020 Fernández-Fontelo et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Fernández-Fontelo, Amanda
Moriña, David
Cabaña, Alejandra
Arratia, Argimiro
Puig, Pere
Estimating the real burden of disease under a pandemic situation: The SARS-CoV2 case
title Estimating the real burden of disease under a pandemic situation: The SARS-CoV2 case
title_full Estimating the real burden of disease under a pandemic situation: The SARS-CoV2 case
title_fullStr Estimating the real burden of disease under a pandemic situation: The SARS-CoV2 case
title_full_unstemmed Estimating the real burden of disease under a pandemic situation: The SARS-CoV2 case
title_short Estimating the real burden of disease under a pandemic situation: The SARS-CoV2 case
title_sort estimating the real burden of disease under a pandemic situation: the sars-cov2 case
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714127/
https://www.ncbi.nlm.nih.gov/pubmed/33270713
http://dx.doi.org/10.1371/journal.pone.0242956
work_keys_str_mv AT fernandezfonteloamanda estimatingtherealburdenofdiseaseunderapandemicsituationthesarscov2case
AT morinadavid estimatingtherealburdenofdiseaseunderapandemicsituationthesarscov2case
AT cabanaalejandra estimatingtherealburdenofdiseaseunderapandemicsituationthesarscov2case
AT arratiaargimiro estimatingtherealburdenofdiseaseunderapandemicsituationthesarscov2case
AT puigpere estimatingtherealburdenofdiseaseunderapandemicsituationthesarscov2case