Cargando…
Perceptual learning of pitch provided by cochlear implant stimulation rate
Cochlear implant users hear pitch evoked by stimulation rate, but discrimination diminishes for rates above 300 Hz. This upper limit on rate pitch is surprising given the remarkable and specialized ability of the auditory nerve to respond synchronously to stimulation rates at least as high as 3 kHz...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714175/ https://www.ncbi.nlm.nih.gov/pubmed/33270735 http://dx.doi.org/10.1371/journal.pone.0242842 |
Sumario: | Cochlear implant users hear pitch evoked by stimulation rate, but discrimination diminishes for rates above 300 Hz. This upper limit on rate pitch is surprising given the remarkable and specialized ability of the auditory nerve to respond synchronously to stimulation rates at least as high as 3 kHz and arguably as high as 10 kHz. Sensitivity to stimulation rate as a pitch cue varies widely across cochlear implant users and can be improved with training. The present study examines individual differences and perceptual learning of stimulation rate as a cue for pitch ranking. Adult cochlear implant users participated in electrode psychophysics that involved testing once per week for three weeks. Stimulation pulse rate discrimination was measured in bipolar and monopolar configurations for apical and basal electrodes. Base stimulation rates between 100 and 800 Hz were examined. Individual differences were quantified using psychophysically derived metrics of spatial tuning and temporal integration. This study examined distribution of measures across subjects, predictive power of psychophysically derived metrics of spatial tuning and temporal integration, and the effect of training on rate discrimination thresholds. Psychophysical metrics of spatial tuning and temporal integration were not predictive of stimulation rate discrimination, but discrimination thresholds improved at lower frequencies with training. Since most clinical devices do not use variable stimulation rates, it is unknown to what extent recipients may learn to use stimulation rate cues if provided in a clear and consistent manner. |
---|