Cargando…

Combination of Astragalus membranaceous and Angelica sinensis Ameliorates Vascular Endothelial Cell Dysfunction by Inhibiting Oxidative Stress

Vascular endothelial dysfunction is an essential and early sign of diabetic macroangiopathy, a primary complication of diabetes mellitus. Astragalus membranaceous-Angelica sinensis is a classic medical combination applied in China to treat diabetes mellitus. The aim of this study was to investigate...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Yonghui, Li, Hui, Chen, Yumin, Zhu, Ranran, Li, Li, Zhang, Xinying, Zhou, Ji, Wang, Zichen, Li, Xiaoli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714576/
https://www.ncbi.nlm.nih.gov/pubmed/33293989
http://dx.doi.org/10.1155/2020/6031782
Descripción
Sumario:Vascular endothelial dysfunction is an essential and early sign of diabetic macroangiopathy, a primary complication of diabetes mellitus. Astragalus membranaceous-Angelica sinensis is a classic medical combination applied in China to treat diabetes mellitus. The aim of this study was to investigate the effect of the granule form of the extract produced from the dried root of Astragalus membranaceous (AM) combination with the granule form of the extract produced from the dried Angelica sinensis (AS) on diabetic macroangiopathy and its underlying mechanism. Herein, rats were treated by AM-AS at a ratio of 3 : 2 via intragastric administration. High glucose-induced human umbilical vein vascular endothelial cells (HUVECs) were then treated with drug-containing serum collected from the rats. In high glucose-treated HUVECs, AM-AS combination increased cell viability (P < 0.05), decreased the percentage of apoptotic cells (P < 0.05) and the expression of the proapoptosis protein caspase 3 (P < 0.05), reduced the proportion of cells in the G0/G1 phase (P < 0.05), decreased reactive oxygen species level (P < 0.05), enhanced cell migration and invasion (P < 0.05), and reduced the level of 8-iso-prostaglandin F2alpha. These results indicate that AM-AS combination at the ratio of 3 : 2 ameliorated HUVEC dysfunction by regulating apoptosis, cell migration, and invasion, which might be mediated by their regulatory effect on reactive oxygen species production. The current study provides a theoretical basis for the treatment of diabetic macroangiopathy using AM-AS.