Cargando…
Combination of Astragalus membranaceous and Angelica sinensis Ameliorates Vascular Endothelial Cell Dysfunction by Inhibiting Oxidative Stress
Vascular endothelial dysfunction is an essential and early sign of diabetic macroangiopathy, a primary complication of diabetes mellitus. Astragalus membranaceous-Angelica sinensis is a classic medical combination applied in China to treat diabetes mellitus. The aim of this study was to investigate...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714576/ https://www.ncbi.nlm.nih.gov/pubmed/33293989 http://dx.doi.org/10.1155/2020/6031782 |
_version_ | 1783618772216578048 |
---|---|
author | Yin, Yonghui Li, Hui Chen, Yumin Zhu, Ranran Li, Li Zhang, Xinying Zhou, Ji Wang, Zichen Li, Xiaoli |
author_facet | Yin, Yonghui Li, Hui Chen, Yumin Zhu, Ranran Li, Li Zhang, Xinying Zhou, Ji Wang, Zichen Li, Xiaoli |
author_sort | Yin, Yonghui |
collection | PubMed |
description | Vascular endothelial dysfunction is an essential and early sign of diabetic macroangiopathy, a primary complication of diabetes mellitus. Astragalus membranaceous-Angelica sinensis is a classic medical combination applied in China to treat diabetes mellitus. The aim of this study was to investigate the effect of the granule form of the extract produced from the dried root of Astragalus membranaceous (AM) combination with the granule form of the extract produced from the dried Angelica sinensis (AS) on diabetic macroangiopathy and its underlying mechanism. Herein, rats were treated by AM-AS at a ratio of 3 : 2 via intragastric administration. High glucose-induced human umbilical vein vascular endothelial cells (HUVECs) were then treated with drug-containing serum collected from the rats. In high glucose-treated HUVECs, AM-AS combination increased cell viability (P < 0.05), decreased the percentage of apoptotic cells (P < 0.05) and the expression of the proapoptosis protein caspase 3 (P < 0.05), reduced the proportion of cells in the G0/G1 phase (P < 0.05), decreased reactive oxygen species level (P < 0.05), enhanced cell migration and invasion (P < 0.05), and reduced the level of 8-iso-prostaglandin F2alpha. These results indicate that AM-AS combination at the ratio of 3 : 2 ameliorated HUVEC dysfunction by regulating apoptosis, cell migration, and invasion, which might be mediated by their regulatory effect on reactive oxygen species production. The current study provides a theoretical basis for the treatment of diabetic macroangiopathy using AM-AS. |
format | Online Article Text |
id | pubmed-7714576 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-77145762020-12-07 Combination of Astragalus membranaceous and Angelica sinensis Ameliorates Vascular Endothelial Cell Dysfunction by Inhibiting Oxidative Stress Yin, Yonghui Li, Hui Chen, Yumin Zhu, Ranran Li, Li Zhang, Xinying Zhou, Ji Wang, Zichen Li, Xiaoli Evid Based Complement Alternat Med Review Article Vascular endothelial dysfunction is an essential and early sign of diabetic macroangiopathy, a primary complication of diabetes mellitus. Astragalus membranaceous-Angelica sinensis is a classic medical combination applied in China to treat diabetes mellitus. The aim of this study was to investigate the effect of the granule form of the extract produced from the dried root of Astragalus membranaceous (AM) combination with the granule form of the extract produced from the dried Angelica sinensis (AS) on diabetic macroangiopathy and its underlying mechanism. Herein, rats were treated by AM-AS at a ratio of 3 : 2 via intragastric administration. High glucose-induced human umbilical vein vascular endothelial cells (HUVECs) were then treated with drug-containing serum collected from the rats. In high glucose-treated HUVECs, AM-AS combination increased cell viability (P < 0.05), decreased the percentage of apoptotic cells (P < 0.05) and the expression of the proapoptosis protein caspase 3 (P < 0.05), reduced the proportion of cells in the G0/G1 phase (P < 0.05), decreased reactive oxygen species level (P < 0.05), enhanced cell migration and invasion (P < 0.05), and reduced the level of 8-iso-prostaglandin F2alpha. These results indicate that AM-AS combination at the ratio of 3 : 2 ameliorated HUVEC dysfunction by regulating apoptosis, cell migration, and invasion, which might be mediated by their regulatory effect on reactive oxygen species production. The current study provides a theoretical basis for the treatment of diabetic macroangiopathy using AM-AS. Hindawi 2020-09-18 /pmc/articles/PMC7714576/ /pubmed/33293989 http://dx.doi.org/10.1155/2020/6031782 Text en Copyright © 2020 Yonghui Yin et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Yin, Yonghui Li, Hui Chen, Yumin Zhu, Ranran Li, Li Zhang, Xinying Zhou, Ji Wang, Zichen Li, Xiaoli Combination of Astragalus membranaceous and Angelica sinensis Ameliorates Vascular Endothelial Cell Dysfunction by Inhibiting Oxidative Stress |
title | Combination of Astragalus membranaceous and Angelica sinensis Ameliorates Vascular Endothelial Cell Dysfunction by Inhibiting Oxidative Stress |
title_full | Combination of Astragalus membranaceous and Angelica sinensis Ameliorates Vascular Endothelial Cell Dysfunction by Inhibiting Oxidative Stress |
title_fullStr | Combination of Astragalus membranaceous and Angelica sinensis Ameliorates Vascular Endothelial Cell Dysfunction by Inhibiting Oxidative Stress |
title_full_unstemmed | Combination of Astragalus membranaceous and Angelica sinensis Ameliorates Vascular Endothelial Cell Dysfunction by Inhibiting Oxidative Stress |
title_short | Combination of Astragalus membranaceous and Angelica sinensis Ameliorates Vascular Endothelial Cell Dysfunction by Inhibiting Oxidative Stress |
title_sort | combination of astragalus membranaceous and angelica sinensis ameliorates vascular endothelial cell dysfunction by inhibiting oxidative stress |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714576/ https://www.ncbi.nlm.nih.gov/pubmed/33293989 http://dx.doi.org/10.1155/2020/6031782 |
work_keys_str_mv | AT yinyonghui combinationofastragalusmembranaceousandangelicasinensisamelioratesvascularendothelialcelldysfunctionbyinhibitingoxidativestress AT lihui combinationofastragalusmembranaceousandangelicasinensisamelioratesvascularendothelialcelldysfunctionbyinhibitingoxidativestress AT chenyumin combinationofastragalusmembranaceousandangelicasinensisamelioratesvascularendothelialcelldysfunctionbyinhibitingoxidativestress AT zhuranran combinationofastragalusmembranaceousandangelicasinensisamelioratesvascularendothelialcelldysfunctionbyinhibitingoxidativestress AT lili combinationofastragalusmembranaceousandangelicasinensisamelioratesvascularendothelialcelldysfunctionbyinhibitingoxidativestress AT zhangxinying combinationofastragalusmembranaceousandangelicasinensisamelioratesvascularendothelialcelldysfunctionbyinhibitingoxidativestress AT zhouji combinationofastragalusmembranaceousandangelicasinensisamelioratesvascularendothelialcelldysfunctionbyinhibitingoxidativestress AT wangzichen combinationofastragalusmembranaceousandangelicasinensisamelioratesvascularendothelialcelldysfunctionbyinhibitingoxidativestress AT lixiaoli combinationofastragalusmembranaceousandangelicasinensisamelioratesvascularendothelialcelldysfunctionbyinhibitingoxidativestress |