Cargando…
Integrating a Machine Learning System Into Clinical Workflows: Qualitative Study
BACKGROUND: Machine learning models have the potential to improve diagnostic accuracy and management of acute conditions. Despite growing efforts to evaluate and validate such models, little is known about how to best translate and implement these products as part of routine clinical care. OBJECTIVE...
Autores principales: | Sandhu, Sahil, Lin, Anthony L, Brajer, Nathan, Sperling, Jessica, Ratliff, William, Bedoya, Armando D, Balu, Suresh, O'Brien, Cara, Sendak, Mark P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714645/ https://www.ncbi.nlm.nih.gov/pubmed/33211015 http://dx.doi.org/10.2196/22421 |
Ejemplares similares
-
Machine learning for early detection of sepsis: an internal and temporal validation study
por: Bedoya, Armando D, et al.
Publicado: (2020) -
Presenting machine learning model information to clinical end users with model facts labels
por: Sendak, Mark P., et al.
Publicado: (2020) -
Real-World Integration of a Sepsis Deep Learning Technology Into Routine Clinical Care: Implementation Study
por: Sendak, Mark P, et al.
Publicado: (2020) -
Accelerating health system innovation: principles and practices from the Duke Institute for Health Innovation
por: Sandhu, Sahil, et al.
Publicado: (2023) -
Development and Integration of Machine Learning Algorithm to Identify Peripheral Arterial Disease: Multistakeholder Qualitative Study
por: Wang, Sabrina M, et al.
Publicado: (2023)