Cargando…
Quantitative Methods for Analyzing Intimate Partner Violence in Microblogs: Observational Study
BACKGROUND: Social media is a rich, virtually untapped source of data on the dynamics of intimate partner violence, one that is both global in scale and intimate in detail. OBJECTIVE: The aim of this study is to use machine learning and other computational methods to analyze social media data for th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714648/ https://www.ncbi.nlm.nih.gov/pubmed/33211021 http://dx.doi.org/10.2196/15347 |
_version_ | 1783618788549197824 |
---|---|
author | Homan, Christopher Michael Schrading, J Nicolas Ptucha, Raymond W Cerulli, Catherine Ovesdotter Alm, Cecilia |
author_facet | Homan, Christopher Michael Schrading, J Nicolas Ptucha, Raymond W Cerulli, Catherine Ovesdotter Alm, Cecilia |
author_sort | Homan, Christopher Michael |
collection | PubMed |
description | BACKGROUND: Social media is a rich, virtually untapped source of data on the dynamics of intimate partner violence, one that is both global in scale and intimate in detail. OBJECTIVE: The aim of this study is to use machine learning and other computational methods to analyze social media data for the reasons victims give for staying in or leaving abusive relationships. METHODS: Human annotation, part-of-speech tagging, and machine learning predictive models, including support vector machines, were used on a Twitter data set of 8767 #WhyIStayed and #WhyILeft tweets each. RESULTS: Our methods explored whether we can analyze micronarratives that include details about victims, abusers, and other stakeholders, the actions that constitute abuse, and how the stakeholders respond. CONCLUSIONS: Our findings are consistent across various machine learning methods, which correspond to observations in the clinical literature, and affirm the relevance of natural language processing and machine learning for exploring issues of societal importance in social media. |
format | Online Article Text |
id | pubmed-7714648 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-77146482020-12-09 Quantitative Methods for Analyzing Intimate Partner Violence in Microblogs: Observational Study Homan, Christopher Michael Schrading, J Nicolas Ptucha, Raymond W Cerulli, Catherine Ovesdotter Alm, Cecilia J Med Internet Res Original Paper BACKGROUND: Social media is a rich, virtually untapped source of data on the dynamics of intimate partner violence, one that is both global in scale and intimate in detail. OBJECTIVE: The aim of this study is to use machine learning and other computational methods to analyze social media data for the reasons victims give for staying in or leaving abusive relationships. METHODS: Human annotation, part-of-speech tagging, and machine learning predictive models, including support vector machines, were used on a Twitter data set of 8767 #WhyIStayed and #WhyILeft tweets each. RESULTS: Our methods explored whether we can analyze micronarratives that include details about victims, abusers, and other stakeholders, the actions that constitute abuse, and how the stakeholders respond. CONCLUSIONS: Our findings are consistent across various machine learning methods, which correspond to observations in the clinical literature, and affirm the relevance of natural language processing and machine learning for exploring issues of societal importance in social media. JMIR Publications 2020-11-19 /pmc/articles/PMC7714648/ /pubmed/33211021 http://dx.doi.org/10.2196/15347 Text en ©Christopher Michael Homan, J Nicolas Schrading, Raymond W Ptucha, Catherine Cerulli, Cecilia Ovesdotter Alm. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 19.11.2020. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Homan, Christopher Michael Schrading, J Nicolas Ptucha, Raymond W Cerulli, Catherine Ovesdotter Alm, Cecilia Quantitative Methods for Analyzing Intimate Partner Violence in Microblogs: Observational Study |
title | Quantitative Methods for Analyzing Intimate Partner Violence in Microblogs: Observational Study |
title_full | Quantitative Methods for Analyzing Intimate Partner Violence in Microblogs: Observational Study |
title_fullStr | Quantitative Methods for Analyzing Intimate Partner Violence in Microblogs: Observational Study |
title_full_unstemmed | Quantitative Methods for Analyzing Intimate Partner Violence in Microblogs: Observational Study |
title_short | Quantitative Methods for Analyzing Intimate Partner Violence in Microblogs: Observational Study |
title_sort | quantitative methods for analyzing intimate partner violence in microblogs: observational study |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714648/ https://www.ncbi.nlm.nih.gov/pubmed/33211021 http://dx.doi.org/10.2196/15347 |
work_keys_str_mv | AT homanchristophermichael quantitativemethodsforanalyzingintimatepartnerviolenceinmicroblogsobservationalstudy AT schradingjnicolas quantitativemethodsforanalyzingintimatepartnerviolenceinmicroblogsobservationalstudy AT ptucharaymondw quantitativemethodsforanalyzingintimatepartnerviolenceinmicroblogsobservationalstudy AT cerullicatherine quantitativemethodsforanalyzingintimatepartnerviolenceinmicroblogsobservationalstudy AT ovesdotteralmcecilia quantitativemethodsforanalyzingintimatepartnerviolenceinmicroblogsobservationalstudy |