Cargando…
Machine Learning Approach to Reduce Alert Fatigue Using a Disease Medication–Related Clinical Decision Support System: Model Development and Validation
BACKGROUND: Computerized physician order entry (CPOE) systems are incorporated into clinical decision support systems (CDSSs) to reduce medication errors and improve patient safety. Automatic alerts generated from CDSSs can directly assist physicians in making useful clinical decisions and can help...
Autores principales: | Poly, Tahmina Nasrin, Islam, Md.Mohaimenul, Muhtar, Muhammad Solihuddin, Yang, Hsuan-Chia, Nguyen, Phung Anh (Alex), Li, Yu-Chuan (Jack) |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714650/ https://www.ncbi.nlm.nih.gov/pubmed/33211018 http://dx.doi.org/10.2196/19489 |
Ejemplares similares
-
Appropriateness of Overridden Alerts in Computerized Physician Order Entry: Systematic Review
por: Poly, Tahmina Nasrin, et al.
Publicado: (2020) -
Development of a Web-Based System for Exploring Cancer Risk With Long-term Use of Drugs: Logistic Regression Approach
por: Yang, Hsuan-Chia, et al.
Publicado: (2021) -
Development of an Artificial Intelligence–Based Automated Recommendation System for Clinical Laboratory Tests: Retrospective Analysis of the National Health Insurance Database
por: Islam, Md Mohaimenul, et al.
Publicado: (2020) -
Deep into Laboratory: An Artificial Intelligence Approach to Recommend Laboratory Tests
por: Islam, Md. Mohaimenul, et al.
Publicado: (2021) -
Machine Learning Approaches for Predicting Psoriatic Arthritis Risk Using Electronic Medical Records: Population-Based Study
por: Lee, Leon Tsung-Ju, et al.
Publicado: (2023)