Cargando…
A Random Shuffle Method to Expand a Narrow Dataset and Overcome the Associated Challenges in a Clinical Study: A Heart Failure Cohort Example
Heart failure (HF) affects at least 26 million people worldwide, so predicting adverse events in HF patients represents a major target of clinical data science. However, achieving large sample sizes sometimes represents a challenge due to difficulties in patient recruiting and long follow-up times,...
Autores principales: | Fassina, Lorenzo, Faragli, Alessandro, Lo Muzio, Francesco Paolo, Kelle, Sebastian, Campana, Carlo, Pieske, Burkert, Edelmann, Frank, Alogna, Alessio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714902/ https://www.ncbi.nlm.nih.gov/pubmed/33330661 http://dx.doi.org/10.3389/fcvm.2020.599923 |
Ejemplares similares
-
In-hospital Heart Rate Reduction With Beta Blockers and Ivabradine Early After Recovery in Patients With Acute Decompensated Heart Failure Reduces Short-Term Mortality and Rehospitalization
por: Faragli, Alessandro, et al.
Publicado: (2021) -
Out-of-Hospital Care of Heart Failure Patients During and After COVID-19 Pandemic: Time for Telemedicine?
por: Faragli, Alessandro, et al.
Publicado: (2020) -
Non-invasive CMR-Based Quantification of Myocardial Power and Efficiency Under Stress and Ischemic Conditions in Landrace Pigs
por: Faragli, Alessandro, et al.
Publicado: (2021) -
The non-invasive assessment of myocardial work by pressure-strain analysis: clinical applications
por: Abawi, Dawud, et al.
Publicado: (2021) -
Thermodilution vs estimated Fick cardiac output measurement in an elderly cohort of patients: A single-centre experience
por: Kresoja, Karl-Patrik, et al.
Publicado: (2019)