Cargando…
MBCL-08. INTEGRATIVE MOLECULAR ANALYSIS OF PATIENT-MATCHED DIAGNOSTIC AND RELAPSED MEDULLOBLASTOMAS
INTRODUCTION: The next generation of clinical trials for relapsed medulloblastoma demands a thorough understanding of the clinical behavior of relapsed tumors as well as the molecular relationship to their diagnostic counterparts. METHODS: A multi-institutional molecular cohort of patient-matched (n...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715065/ http://dx.doi.org/10.1093/neuonc/noaa222.484 |
Sumario: | INTRODUCTION: The next generation of clinical trials for relapsed medulloblastoma demands a thorough understanding of the clinical behavior of relapsed tumors as well as the molecular relationship to their diagnostic counterparts. METHODS: A multi-institutional molecular cohort of patient-matched (n=126 patients) diagnostic MBs and relapses/subsequent malignancies was profiled by DNA methylation array. Entity, subgroup classification, and genome-wide copy-number aberrations were assigned while parallel next-generation (whole-exome or targeted panel) sequencing on the majority of the cohort facilitated inference of somatic driver mutations. RESULTS: Comprised of WNT (2%), SHH (41%), Group 3 (18%), Group 4 (39%), primary tumors retained subgroup affiliation at relapse with the notable exception of 10% of cases. The majority (8/13) of discrepant classifications were determined to be secondary glioblastomas. Additionally, rare (n=3) subgroup-switching events of Group 4 primary tumors to Group 3 relapses were identified coincident with MYC/MYCN pathway alterations. Amongst truly relapsing MBs, copy-number analyses suggest somatic clonal divergence between primary MBs and their respective relapses with Group 3 (55% of alterations shared) and Group 4 tumors (63% alterations shared) sharing a larger proportion of cytogenetic alterations compared to SHH tumors (42% alterations shared; Chi-square p-value < 0.001). Subgroup- and gene-specific patterns of conservation and divergence amongst putative driver genes were also observed. CONCLUSION: Integrated molecular analysis of relapsed MB discloses potential mechanisms underlying treatment failure and disease recurrence while motivating rational implementation of relapse-specific therapies. The degree of genetic divergence between primary and relapsed MBs varied by subgroup but suggested considerably higher conservation than prior estimates. |
---|