Cargando…
DIPG-76. HISTONE H3 PHOSPHORYLATION IN H3K27M MIDLINE GLIOMAS
Diffuse midline gliomas (DMG) patients have a dire prognosis despite radiation therapy and there is an urgent need to develop more effective treatments. DMG are characterized by heterozygous mutations in select H3 genes resulting in the replacement of lysine 27 by methionine (K27M) that leads to glo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715133/ http://dx.doi.org/10.1093/neuonc/noaa222.118 |
Sumario: | Diffuse midline gliomas (DMG) patients have a dire prognosis despite radiation therapy and there is an urgent need to develop more effective treatments. DMG are characterized by heterozygous mutations in select H3 genes resulting in the replacement of lysine 27 by methionine (K27M) that leads to global epigenetic reprogramming and drives tumorigenesis. We previously reported that pharmacological inhibition of aurora kinase (AKI) may represent a targeted approach for treating tumors with this mutation. Our analysis with both published dataset and patient samples showed that patients with higher aurora kinase A (AKA) expression were associated with worse survival. AKA phosphorylates H3S10 and H3S28 during mitosis. Intriguingly, phosphorylation of the H3S28 (H3S28ph) by AKA blocks PRC2 methyltransferase activity and decreases global H3K27me3 in certain stem cells. We propose that a similar mechanism occurs in H3K27M DMG tumors, where there is a reciprocal relationship between H3S28ph and H3K27me3. We found that AKI significantly decreases H3S28ph while increasing H3K27me3 specifically in H3K27M tumors. To further evaluate the link between the H3K27M mutation and H3 serine phosphorylation, we used CRISPR/Cas9-directed gene editing to silence H3S28ph by replacing serine with alanine (H3S28A) in DIPG cell lines. Ectopic expression of histone H3S28A leads to a prominent epigenetic changes in H3K27M tumors and is similar to AKA inhibition. Overall, this study highlights H3S28ph, one of the targets of AK, is a key driver of epigenetic changes in H3K27M tumors through both direct and indirect changes to H3K27me3 and H3K27ac across the genome. |
---|