Cargando…
IMG-22. A DEEP LEARNING MODEL FOR AUTOMATIC POSTERIOR FOSSA PEDIATRIC BRAIN TUMOR SEGMENTATION: A MULTI-INSTITUTIONAL STUDY
BACKGROUND: Brain tumors are the most common solid malignancies in childhood, many of which develop in the posterior fossa (PF). Manual tumor measurements are frequently required to optimize registration into surgical navigation systems or for surveillance of nonresectable tumors after therapy. With...
Autores principales: | Tam, Lydia, Lee, Edward, Han, Michelle, Wright, Jason, Chen, Leo, Quon, Jenn, Lober, Robert, Poussaint, Tina, Grant, Gerald, Taylor, Michael, Ramaswamy, Vijay, Ho, Chang, Cheshier, Samuel, Said, Mourad, Vitanza, Nick, Edwards, Michael, Yeom, Kristen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715226/ http://dx.doi.org/10.1093/neuonc/noaa222.357 |
Ejemplares similares
-
IMG-13. MRI-BASED RADIOMICS PROGNOSTIC MARKERS OF POSTERIOR FOSSA EPENDYMOMA
por: Tam, Lydia, et al.
Publicado: (2020) -
IMG-10. MRI-BASED RADIOMIC PROGNOSTIC MARKERS OF DIFFUSE MIDLINE GLIOMA
por: Tam, Lydia, et al.
Publicado: (2020) -
IMG-03. RESPONSE ASSESSMENT IN PEDIATRIC LOW-GRADE GLIOMA: RECOMMENDATIONS FROM THE RESPONSE ASSESSMENT IN PEDIATRIC NEURO-ONCOLOGY (RAPNO) WORKING GROUP
por: Fangusaro, Jason, et al.
Publicado: (2020) -
Treatment implications of posterior fossa ependymoma subgroups
por: Ramaswamy, Vijay, et al.
Publicado: (2016) -
PATH-06. IMAGE-BASED MACHINE LEARNING CLASSIFIER FOR PEDIATRIC POSTERIOR FOSSA TUMOR HISTOPATHOLOGY
por: Tam, Lydia, et al.
Publicado: (2020)