Cargando…

HGG-51. PAIRED EPITHELIOID GLIOBLASTOMA PATIENT DERIVED XENOGRAFT MODELS WITH/WITHOUT MOLECULAR TARGET THERAPY

Epithelioid glioblastoma (E-GBM) predominantly arises at younger age and promotes dismal prognosis. Because of its rare etiology, pathological and genetical characterization of E-GBM remains elusive. Herein, we report 2 patient-derived E-GBM xenograft (PDX) models from young adult patients (YMG62 an...

Descripción completa

Detalles Bibliográficos
Autores principales: Sasame, Jo, Tateishi, Kensuke, Ikegaya, Naoki, Miyake, Yohei, Miyake, Shigeta, Nakamura, Taishi, Yamamoto, Tetsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715391/
http://dx.doi.org/10.1093/neuonc/noaa222.331
Descripción
Sumario:Epithelioid glioblastoma (E-GBM) predominantly arises at younger age and promotes dismal prognosis. Because of its rare etiology, pathological and genetical characterization of E-GBM remains elusive. Herein, we report 2 patient-derived E-GBM xenograft (PDX) models from young adult patients (YMG62 and YMG89) with BRAF(V600E) and TERT promoter mutation. The YMG62 patient received dabrafenib with trametinib, while YMG89 patient received dabrafenib monotherapy after recurrence with Stupp regimen. These molecular target therapies were initially responded, but gradually became resistant (YMG62R and YMG89R) and resulted in lethal. Treatment resistant cells were collected from CSF. These primary cells were propagated at multiple passage in vitro. Paired PDX models were established from initial and recurrent cells. All PDX tumors were preferentially disseminated and negative expression of GFAP, which were recapitulated to the patient characteristics. BRAF and MEK inhibitor moderately suppressed cell viability of YMG62 and YMG89 in vitro. However, BRAF and MEK inhibitor became resistant at recurrence in vitro. Western blotting indicated retained phospho-MEK expression after BRAF/MEK inhibitor treatment in recurrent cells, which implies crucial role of MEK activation for tumor maintenance in BRAFV600E mutant E-GBM. Together, paired E-GBM PDX models with/without molecular target therapy recapitulate patient characteristics, which may contribute to elucidate tumor biology and establish novel therapeutic target in E-GBM.