Cargando…

MODL-14. SMALL MOLECULE TARGETING OF ONCOGENIC FGF2-FGFR SIGNALING IN BRAIN TUMORS

FGF2, the ligand of FGF receptors (FGFRs), is expressed in the developing and adult brain. FGF2-FGFR1 signaling causes the induction and maintenance of cancer stem cells through ERK-dependent up-regulation of ZEB1 and Olig2 in glioblastoma. In SHH medulloblastoma, Olig2 triggers tumor initiation fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Karthiga Santhana, Brunner, Cyrill, Schuster, Matthias, Zerbe, Oliver, Grotzer, Michael, Schneider, Gisbert, Baumgartner, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715438/
http://dx.doi.org/10.1093/neuonc/noaa222.588
Descripción
Sumario:FGF2, the ligand of FGF receptors (FGFRs), is expressed in the developing and adult brain. FGF2-FGFR1 signaling causes the induction and maintenance of cancer stem cells through ERK-dependent up-regulation of ZEB1 and Olig2 in glioblastoma. In SHH medulloblastoma, Olig2 triggers tumor initiation from GCPs, maintains quiescent stem-like cells during the disease and contributes to tumor outgrowth at recurrence. We found that FGF2-FGFR signaling causes increased growth and tissue invasion through the FGFR adaptor protein FRS2 in SHH and group-3 medulloblastoma (1). Thus, targeting of FGFR-FRS2 signaling could abrogate brain tumor growth and spread by repressing tumor-promoting functions that are induced by microenvironmental FGF2. Using virtual screening combined with functional validation, we identified protein-protein interaction inhibitors (F2i) that bind FRS2 and abrogate FGFR signaling to the MAP-ERK pathway. Consistent with the requirement of FRS2 for pro-invasive signaling downstream of FGFR1 in medulloblastoma, F2i also efficiently block FGF2-induced migration and invasion in medulloblastoma-derived cells. Selected F2i display excellent binding kinetics with a similar Kd as the natural ligand domain of FGFR and cause steric alterations in the targeted protein domain. On-target activity was confirmed by thermal proteome profiling. Neither in silico screening nor empirical testing revealed significant off-target activity of the compounds. No toxicity of F2i was observed in cell-based models with confirmed functional activity on invasion and MAPK activation. Thus, we identified novel, low molecular weight pharmacological protein-protein interaction inhibitors with an excellent potential to specifically block FGFR functions relevant for brain tumor progression. 1. Santhana Kumar et al., CellReports23, 3798–3812.e8 (2018).