Cargando…
StackNet-DenVIS: a multi-layer perceptron stacked ensembling approach for COVID-19 detection using X-ray images
The highly contagious nature of Coronavirus disease 2019 (Covid-19) resulted in a global pandemic. Due to the relatively slow and taxing nature of conventional testing for Covid-19, a faster method needs to be in place. The current researches have suggested that visible irregularities found in the c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715648/ https://www.ncbi.nlm.nih.gov/pubmed/33275187 http://dx.doi.org/10.1007/s13246-020-00952-6 |
_version_ | 1783619004741451776 |
---|---|
author | Autee, Pratik Bagwe, Sagar Shah, Vimal Srivastava, Kriti |
author_facet | Autee, Pratik Bagwe, Sagar Shah, Vimal Srivastava, Kriti |
author_sort | Autee, Pratik |
collection | PubMed |
description | The highly contagious nature of Coronavirus disease 2019 (Covid-19) resulted in a global pandemic. Due to the relatively slow and taxing nature of conventional testing for Covid-19, a faster method needs to be in place. The current researches have suggested that visible irregularities found in the chest X-ray of Covid-19 positive patients are indicative of the presence of the disease. Hence, Deep Learning and Image Classification techniques can be employed to learn from these irregularities, and classify accordingly with high accuracy. This research presents an approach to create a classifier model named StackNet-DenVIS which is designed to act as a screening process before conducting the existing swab tests. Using a novel approach, which incorporates Transfer Learning and Stacked Generalization, the model aims to lower the False Negative rate of classification compensating for the 30% False Negative rate of the swab tests. A dataset gathered from multiple reliable sources consisting of 9953 Chest X-rays (868 Covid and 9085 Non-Covid) was used. Also, this research demonstrates handling data imbalance using various techniques involving Generative Adversarial Networks and sampling techniques. The accuracy, sensitivity, and specificity obtained on our proposed model were 95.07%, 99.40% and 94.61% respectively. To the best of our knowledge, the combination of accuracy and false negative rate obtained by this paper outperforms the current implementations. We must also highlight that our proposed architecture also considers other types of viral pneumonia. Given the unprecedented sensitivity of our model we are optimistic it contributes to a better Covid-19 detection. |
format | Online Article Text |
id | pubmed-7715648 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-77156482020-12-04 StackNet-DenVIS: a multi-layer perceptron stacked ensembling approach for COVID-19 detection using X-ray images Autee, Pratik Bagwe, Sagar Shah, Vimal Srivastava, Kriti Phys Eng Sci Med Scientific Paper The highly contagious nature of Coronavirus disease 2019 (Covid-19) resulted in a global pandemic. Due to the relatively slow and taxing nature of conventional testing for Covid-19, a faster method needs to be in place. The current researches have suggested that visible irregularities found in the chest X-ray of Covid-19 positive patients are indicative of the presence of the disease. Hence, Deep Learning and Image Classification techniques can be employed to learn from these irregularities, and classify accordingly with high accuracy. This research presents an approach to create a classifier model named StackNet-DenVIS which is designed to act as a screening process before conducting the existing swab tests. Using a novel approach, which incorporates Transfer Learning and Stacked Generalization, the model aims to lower the False Negative rate of classification compensating for the 30% False Negative rate of the swab tests. A dataset gathered from multiple reliable sources consisting of 9953 Chest X-rays (868 Covid and 9085 Non-Covid) was used. Also, this research demonstrates handling data imbalance using various techniques involving Generative Adversarial Networks and sampling techniques. The accuracy, sensitivity, and specificity obtained on our proposed model were 95.07%, 99.40% and 94.61% respectively. To the best of our knowledge, the combination of accuracy and false negative rate obtained by this paper outperforms the current implementations. We must also highlight that our proposed architecture also considers other types of viral pneumonia. Given the unprecedented sensitivity of our model we are optimistic it contributes to a better Covid-19 detection. Springer International Publishing 2020-12-04 2020 /pmc/articles/PMC7715648/ /pubmed/33275187 http://dx.doi.org/10.1007/s13246-020-00952-6 Text en © Australasian College of Physical Scientists and Engineers in Medicine 2020 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Scientific Paper Autee, Pratik Bagwe, Sagar Shah, Vimal Srivastava, Kriti StackNet-DenVIS: a multi-layer perceptron stacked ensembling approach for COVID-19 detection using X-ray images |
title | StackNet-DenVIS: a multi-layer perceptron stacked ensembling approach for COVID-19 detection using X-ray images |
title_full | StackNet-DenVIS: a multi-layer perceptron stacked ensembling approach for COVID-19 detection using X-ray images |
title_fullStr | StackNet-DenVIS: a multi-layer perceptron stacked ensembling approach for COVID-19 detection using X-ray images |
title_full_unstemmed | StackNet-DenVIS: a multi-layer perceptron stacked ensembling approach for COVID-19 detection using X-ray images |
title_short | StackNet-DenVIS: a multi-layer perceptron stacked ensembling approach for COVID-19 detection using X-ray images |
title_sort | stacknet-denvis: a multi-layer perceptron stacked ensembling approach for covid-19 detection using x-ray images |
topic | Scientific Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715648/ https://www.ncbi.nlm.nih.gov/pubmed/33275187 http://dx.doi.org/10.1007/s13246-020-00952-6 |
work_keys_str_mv | AT auteepratik stacknetdenvisamultilayerperceptronstackedensemblingapproachforcovid19detectionusingxrayimages AT bagwesagar stacknetdenvisamultilayerperceptronstackedensemblingapproachforcovid19detectionusingxrayimages AT shahvimal stacknetdenvisamultilayerperceptronstackedensemblingapproachforcovid19detectionusingxrayimages AT srivastavakriti stacknetdenvisamultilayerperceptronstackedensemblingapproachforcovid19detectionusingxrayimages |