Cargando…
MODL-17. SHP2 INHIBITORS SHOW ACTIVITY AGAINST NF1-DEFICIENT GLIOMAS AND ENHANCE MAPK PATHWAY INHIBITION IN BRAF-V600E MUTANT GLIOMAS
INTRODUCTION: Activation of the RAS-MAPK signaling cascade is common in pediatric gliomas. Based on the role of SHP2 in RAS pathway signaling, we hypothesized that NF1-deficient pediatric glioma models would respond to SHP2 inhibitor monotherapy whereas BRAF-V600E gliomas would not. However, we post...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715749/ http://dx.doi.org/10.1093/neuonc/noaa222.591 |
_version_ | 1783619028327071744 |
---|---|
author | Muldoon, Daniel Zhao, Guisheng Batt, Carly Singh, Mallika Nicolaides, Theodore |
author_facet | Muldoon, Daniel Zhao, Guisheng Batt, Carly Singh, Mallika Nicolaides, Theodore |
author_sort | Muldoon, Daniel |
collection | PubMed |
description | INTRODUCTION: Activation of the RAS-MAPK signaling cascade is common in pediatric gliomas. Based on the role of SHP2 in RAS pathway signaling, we hypothesized that NF1-deficient pediatric glioma models would respond to SHP2 inhibitor monotherapy whereas BRAF-V600E gliomas would not. However, we postulated that the latter would exhibit increased sensitivity to a BRAF inhibitor (BRAFi) in combination with SHP2i. Here we demonstrate that the SHP2 inhibitors SHP099 and RMC-4550 (SHP2i) show significant single-agent activity in vitro against NF1-deficient glioma cells and that the combination of RMC-4550 with BRAFi shows increased activity in BRAF-V600E glioma cells relative to the single-agents. METHODS: Using a panel of NF1 mutant/deficient and BRAF-V600E mutant glioma cell lines we examined effects on cell viability and protein expression levels of total and phosphorylated MEK, ERK, and AKT. RESULTS: LN229 and U87 NF1-deficient glioma cells are sensitive to SHP2i alone but not A375 cells (melanoma, BRAF-V600E). Additionally, we show that in multiple BRAF-V600E glioma cell lines BRAFi sensitivity increases when combined with a SHP2i. Immunoblots show decreased expression of pERK and pMEK in LN229 cells following SHP2i exposure, while A375 cells maintain MAPK pathway signaling. A sustained decrease in the expression of pERK after 24 hours was observed in BRAF-V600E glioma cells with BRAFi in combination with SHP2i, consistent with relief of feedback inhibition. In vivo studies using orthotopic xenograft models are underway. CONCLUSION: SHP2i shows preclinical activity in vitro against NF1-deficient pediatric glioma cell lines as a single-agent and against BRAF-V600E gliomas in combination with BRAFi. |
format | Online Article Text |
id | pubmed-7715749 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-77157492020-12-09 MODL-17. SHP2 INHIBITORS SHOW ACTIVITY AGAINST NF1-DEFICIENT GLIOMAS AND ENHANCE MAPK PATHWAY INHIBITION IN BRAF-V600E MUTANT GLIOMAS Muldoon, Daniel Zhao, Guisheng Batt, Carly Singh, Mallika Nicolaides, Theodore Neuro Oncol Preclinical Models/Experimental Therapy/Drug Discovery INTRODUCTION: Activation of the RAS-MAPK signaling cascade is common in pediatric gliomas. Based on the role of SHP2 in RAS pathway signaling, we hypothesized that NF1-deficient pediatric glioma models would respond to SHP2 inhibitor monotherapy whereas BRAF-V600E gliomas would not. However, we postulated that the latter would exhibit increased sensitivity to a BRAF inhibitor (BRAFi) in combination with SHP2i. Here we demonstrate that the SHP2 inhibitors SHP099 and RMC-4550 (SHP2i) show significant single-agent activity in vitro against NF1-deficient glioma cells and that the combination of RMC-4550 with BRAFi shows increased activity in BRAF-V600E glioma cells relative to the single-agents. METHODS: Using a panel of NF1 mutant/deficient and BRAF-V600E mutant glioma cell lines we examined effects on cell viability and protein expression levels of total and phosphorylated MEK, ERK, and AKT. RESULTS: LN229 and U87 NF1-deficient glioma cells are sensitive to SHP2i alone but not A375 cells (melanoma, BRAF-V600E). Additionally, we show that in multiple BRAF-V600E glioma cell lines BRAFi sensitivity increases when combined with a SHP2i. Immunoblots show decreased expression of pERK and pMEK in LN229 cells following SHP2i exposure, while A375 cells maintain MAPK pathway signaling. A sustained decrease in the expression of pERK after 24 hours was observed in BRAF-V600E glioma cells with BRAFi in combination with SHP2i, consistent with relief of feedback inhibition. In vivo studies using orthotopic xenograft models are underway. CONCLUSION: SHP2i shows preclinical activity in vitro against NF1-deficient pediatric glioma cell lines as a single-agent and against BRAF-V600E gliomas in combination with BRAFi. Oxford University Press 2020-12-04 /pmc/articles/PMC7715749/ http://dx.doi.org/10.1093/neuonc/noaa222.591 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Preclinical Models/Experimental Therapy/Drug Discovery Muldoon, Daniel Zhao, Guisheng Batt, Carly Singh, Mallika Nicolaides, Theodore MODL-17. SHP2 INHIBITORS SHOW ACTIVITY AGAINST NF1-DEFICIENT GLIOMAS AND ENHANCE MAPK PATHWAY INHIBITION IN BRAF-V600E MUTANT GLIOMAS |
title | MODL-17. SHP2 INHIBITORS SHOW ACTIVITY AGAINST NF1-DEFICIENT GLIOMAS AND ENHANCE MAPK PATHWAY INHIBITION IN BRAF-V600E MUTANT GLIOMAS |
title_full | MODL-17. SHP2 INHIBITORS SHOW ACTIVITY AGAINST NF1-DEFICIENT GLIOMAS AND ENHANCE MAPK PATHWAY INHIBITION IN BRAF-V600E MUTANT GLIOMAS |
title_fullStr | MODL-17. SHP2 INHIBITORS SHOW ACTIVITY AGAINST NF1-DEFICIENT GLIOMAS AND ENHANCE MAPK PATHWAY INHIBITION IN BRAF-V600E MUTANT GLIOMAS |
title_full_unstemmed | MODL-17. SHP2 INHIBITORS SHOW ACTIVITY AGAINST NF1-DEFICIENT GLIOMAS AND ENHANCE MAPK PATHWAY INHIBITION IN BRAF-V600E MUTANT GLIOMAS |
title_short | MODL-17. SHP2 INHIBITORS SHOW ACTIVITY AGAINST NF1-DEFICIENT GLIOMAS AND ENHANCE MAPK PATHWAY INHIBITION IN BRAF-V600E MUTANT GLIOMAS |
title_sort | modl-17. shp2 inhibitors show activity against nf1-deficient gliomas and enhance mapk pathway inhibition in braf-v600e mutant gliomas |
topic | Preclinical Models/Experimental Therapy/Drug Discovery |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715749/ http://dx.doi.org/10.1093/neuonc/noaa222.591 |
work_keys_str_mv | AT muldoondaniel modl17shp2inhibitorsshowactivityagainstnf1deficientgliomasandenhancemapkpathwayinhibitioninbrafv600emutantgliomas AT zhaoguisheng modl17shp2inhibitorsshowactivityagainstnf1deficientgliomasandenhancemapkpathwayinhibitioninbrafv600emutantgliomas AT battcarly modl17shp2inhibitorsshowactivityagainstnf1deficientgliomasandenhancemapkpathwayinhibitioninbrafv600emutantgliomas AT singhmallika modl17shp2inhibitorsshowactivityagainstnf1deficientgliomasandenhancemapkpathwayinhibitioninbrafv600emutantgliomas AT nicolaidestheodore modl17shp2inhibitorsshowactivityagainstnf1deficientgliomasandenhancemapkpathwayinhibitioninbrafv600emutantgliomas |