Cargando…

QOL-22. MACHINE-LEARNING INFERENCE MAY PREDICT QUALITY OF LIFE SUBGROUPS OF ADAMANTINOMATOUS CRANIOPHARYNGIOMA

BACKGROUND: Due to disease and/or treatment-related injury, such as hypothalamic, visual, and endocrine damage, quality of life (QoL) scores after childhood-onset Adamantinomatous Craniopharyngioma (ACP) are among the lowest of all pediatric brain tumors. Decision-making regarding management would b...

Descripción completa

Detalles Bibliográficos
Autores principales: Hengartner, Astrid C, Prince, Eric, Staulcup, Susan, Vijmasi, Trinka, Souweidane, Mark, Jackson, Eric M, Johnston, James M, Anderson, Richard C E, Naftel, Robert P, Grant, Gerald, Niazi, Toba N, Dudley, Roy, Limbrick, David D, Ginn, Kevin, Smith, Amy, Kilburn, Lindsay, Jallo, George, Wilkening, Greta, Hankinson, Todd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715913/
http://dx.doi.org/10.1093/neuonc/noaa222.684
_version_ 1783619067090829312
author Hengartner, Astrid C
Prince, Eric
Staulcup, Susan
Vijmasi, Trinka
Souweidane, Mark
Jackson, Eric M
Johnston, James M
Anderson, Richard C E
Naftel, Robert P
Grant, Gerald
Niazi, Toba N
Dudley, Roy
Limbrick, David D
Ginn, Kevin
Smith, Amy
Kilburn, Lindsay
Jallo, George
Wilkening, Greta
Hankinson, Todd
author_facet Hengartner, Astrid C
Prince, Eric
Staulcup, Susan
Vijmasi, Trinka
Souweidane, Mark
Jackson, Eric M
Johnston, James M
Anderson, Richard C E
Naftel, Robert P
Grant, Gerald
Niazi, Toba N
Dudley, Roy
Limbrick, David D
Ginn, Kevin
Smith, Amy
Kilburn, Lindsay
Jallo, George
Wilkening, Greta
Hankinson, Todd
author_sort Hengartner, Astrid C
collection PubMed
description BACKGROUND: Due to disease and/or treatment-related injury, such as hypothalamic, visual, and endocrine damage, quality of life (QoL) scores after childhood-onset Adamantinomatous Craniopharyngioma (ACP) are among the lowest of all pediatric brain tumors. Decision-making regarding management would be aided by more complete understanding of a patients likely QoL trajectory following intervention. METHODS: We retrospectively analyzed caregiver and patient-reported QoL-instruments from the first 50 patients (ages 1–17 years at diagnosis) enrolled in the international Advancing Treatment for Pediatric Craniopharyngioma (ATPC) consortium. Surveys included 205 pediatric-relevant questions and were completed at diagnosis, and 1- and 12-months following diagnosis. Using Multiple Correspondence Analysis (MCA), these categorical QoL surveys were interrogated to identify time-dependent patient subgroups. Additionally, custom deep learning classifiers were developed using Google’s TensorFlow framework. RESULTS: By representing QoL data in the reduced dimensionality of MCA-space, we identified QoL subgroups that either improved or declined over time. We assessed differential trends in QoL responses to identify variables that were subgroup specific (Kolmogorov-Smirnov p-value < 0.1; n=20). Additionally, our optimized deep learning classifier achieved a mean 5-fold cross-validation area under precision-recall curve score > 0.99 when classifying QoL subgroups at 12 month follow-up, using only baseline data. CONCLUSIONS: This work demonstrates the existence of time-dependent QoL-based ACP subgroups that can be inferred at time-of-diagnosis via machine learning analyses of baseline survey responses. The ability to predict an ACP patient’s QoL trajectory affords caregivers valuable information that can be leveraged to maximize that patient’s psychosocial state and therefore improve overall therapy.
format Online
Article
Text
id pubmed-7715913
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-77159132020-12-09 QOL-22. MACHINE-LEARNING INFERENCE MAY PREDICT QUALITY OF LIFE SUBGROUPS OF ADAMANTINOMATOUS CRANIOPHARYNGIOMA Hengartner, Astrid C Prince, Eric Staulcup, Susan Vijmasi, Trinka Souweidane, Mark Jackson, Eric M Johnston, James M Anderson, Richard C E Naftel, Robert P Grant, Gerald Niazi, Toba N Dudley, Roy Limbrick, David D Ginn, Kevin Smith, Amy Kilburn, Lindsay Jallo, George Wilkening, Greta Hankinson, Todd Neuro Oncol Neuropsychology/Quality of Life BACKGROUND: Due to disease and/or treatment-related injury, such as hypothalamic, visual, and endocrine damage, quality of life (QoL) scores after childhood-onset Adamantinomatous Craniopharyngioma (ACP) are among the lowest of all pediatric brain tumors. Decision-making regarding management would be aided by more complete understanding of a patients likely QoL trajectory following intervention. METHODS: We retrospectively analyzed caregiver and patient-reported QoL-instruments from the first 50 patients (ages 1–17 years at diagnosis) enrolled in the international Advancing Treatment for Pediatric Craniopharyngioma (ATPC) consortium. Surveys included 205 pediatric-relevant questions and were completed at diagnosis, and 1- and 12-months following diagnosis. Using Multiple Correspondence Analysis (MCA), these categorical QoL surveys were interrogated to identify time-dependent patient subgroups. Additionally, custom deep learning classifiers were developed using Google’s TensorFlow framework. RESULTS: By representing QoL data in the reduced dimensionality of MCA-space, we identified QoL subgroups that either improved or declined over time. We assessed differential trends in QoL responses to identify variables that were subgroup specific (Kolmogorov-Smirnov p-value < 0.1; n=20). Additionally, our optimized deep learning classifier achieved a mean 5-fold cross-validation area under precision-recall curve score > 0.99 when classifying QoL subgroups at 12 month follow-up, using only baseline data. CONCLUSIONS: This work demonstrates the existence of time-dependent QoL-based ACP subgroups that can be inferred at time-of-diagnosis via machine learning analyses of baseline survey responses. The ability to predict an ACP patient’s QoL trajectory affords caregivers valuable information that can be leveraged to maximize that patient’s psychosocial state and therefore improve overall therapy. Oxford University Press 2020-12-04 /pmc/articles/PMC7715913/ http://dx.doi.org/10.1093/neuonc/noaa222.684 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Neuropsychology/Quality of Life
Hengartner, Astrid C
Prince, Eric
Staulcup, Susan
Vijmasi, Trinka
Souweidane, Mark
Jackson, Eric M
Johnston, James M
Anderson, Richard C E
Naftel, Robert P
Grant, Gerald
Niazi, Toba N
Dudley, Roy
Limbrick, David D
Ginn, Kevin
Smith, Amy
Kilburn, Lindsay
Jallo, George
Wilkening, Greta
Hankinson, Todd
QOL-22. MACHINE-LEARNING INFERENCE MAY PREDICT QUALITY OF LIFE SUBGROUPS OF ADAMANTINOMATOUS CRANIOPHARYNGIOMA
title QOL-22. MACHINE-LEARNING INFERENCE MAY PREDICT QUALITY OF LIFE SUBGROUPS OF ADAMANTINOMATOUS CRANIOPHARYNGIOMA
title_full QOL-22. MACHINE-LEARNING INFERENCE MAY PREDICT QUALITY OF LIFE SUBGROUPS OF ADAMANTINOMATOUS CRANIOPHARYNGIOMA
title_fullStr QOL-22. MACHINE-LEARNING INFERENCE MAY PREDICT QUALITY OF LIFE SUBGROUPS OF ADAMANTINOMATOUS CRANIOPHARYNGIOMA
title_full_unstemmed QOL-22. MACHINE-LEARNING INFERENCE MAY PREDICT QUALITY OF LIFE SUBGROUPS OF ADAMANTINOMATOUS CRANIOPHARYNGIOMA
title_short QOL-22. MACHINE-LEARNING INFERENCE MAY PREDICT QUALITY OF LIFE SUBGROUPS OF ADAMANTINOMATOUS CRANIOPHARYNGIOMA
title_sort qol-22. machine-learning inference may predict quality of life subgroups of adamantinomatous craniopharyngioma
topic Neuropsychology/Quality of Life
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715913/
http://dx.doi.org/10.1093/neuonc/noaa222.684
work_keys_str_mv AT hengartnerastridc qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT princeeric qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT staulcupsusan qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT vijmasitrinka qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT souweidanemark qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT jacksonericm qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT johnstonjamesm qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT andersonrichardce qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT naftelrobertp qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT grantgerald qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT niazitoban qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT dudleyroy qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT limbrickdavidd qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT ginnkevin qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT smithamy qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT kilburnlindsay qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT jallogeorge qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT wilkeninggreta qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma
AT hankinsontodd qol22machinelearninginferencemaypredictqualityoflifesubgroupsofadamantinomatouscraniopharyngioma