Cargando…
DIPG-39. NOVEL PROTEOMIC ANALYSIS REVEALS EPIGENETIC THERAPEUTIC TARGETS IN PEDIATRIC GLIOMA
INTRODUCTION: Diffuse midline glioma is a highly morbid pediatric cancer. Up to 80% harbor Histone H3K27M mutation, which alters Histone H3 post-translational modifications (PTMs) and genomic enrichment patterns, affecting chromatin structure and transcription. We previously identified tumorigenic p...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715980/ http://dx.doi.org/10.1093/neuonc/noaa222.086 |
_version_ | 1783619083095244800 |
---|---|
author | Li, Daphne Huang, Tina Camarillo, Jeannie Piunti, Andrea Qi, Jin An, Shejuan Nazarian, Javad Thomas, Paul Saratsis, Amanda |
author_facet | Li, Daphne Huang, Tina Camarillo, Jeannie Piunti, Andrea Qi, Jin An, Shejuan Nazarian, Javad Thomas, Paul Saratsis, Amanda |
author_sort | Li, Daphne |
collection | PubMed |
description | INTRODUCTION: Diffuse midline glioma is a highly morbid pediatric cancer. Up to 80% harbor Histone H3K27M mutation, which alters Histone H3 post-translational modifications (PTMs) and genomic enrichment patterns, affecting chromatin structure and transcription. We previously identified tumorigenic patterns of H3K27Ac/bromodomain co-enrichment and pre-clinical efficacy of bromodomain inhibition (JQ1) in DMG. Here, we employ a novel proteomics approach developed at our institution to further elucidate the impact of H3K27M mutation on glioma epigenetic signatures and treatment response. METHODS: Epiproteomic analysis was performed on pediatric glioma cells (H3K27 WT n=2, H3K27M n=2) to characterize 95 distinct Histone H3 N-terminal tail modification states. Cells were treated with JQ1 or DMSO, and collected at 0h, 24h, 48h, Histones extracted from isolated nuclei and immunopurified, then analyzed by LC-MS/MS. Results were integrated with RNA-Seq and ChIP Seq (H3.3K27M, H3.3, H3K27Ac, H3K27me3, H3K4me1, H3K4me3) from the same cell lines. Pediatric glioma tissues (H3K27M WT n=3, H3K27M n= 9) were similarly analyzed to validate cell line results. RESULTS: Cell PTM profiles cluster by H3 mutation status on unsupervised analysis. Significant differential PTM abundance and genomic enrichment H3K27M, H3.3 WT, H3K27Me3 and H3K27Ac was observed between mutant and wild type cell lines with epigenetic-targeted therapy, correlating with cell transcriptomes. CONCLUSIONS: Histone H3 tail analysis reveals the effects of H3K27M mutation and bromodomain inhibition on the tumor epigenetic landscape, providing insight into mechanisms of tumorigenesis and therapy response. Further investigation of the utility of these signatures as biomarkers for diagnosis and monitoring treatment response are therefore underway. |
format | Online Article Text |
id | pubmed-7715980 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-77159802020-12-09 DIPG-39. NOVEL PROTEOMIC ANALYSIS REVEALS EPIGENETIC THERAPEUTIC TARGETS IN PEDIATRIC GLIOMA Li, Daphne Huang, Tina Camarillo, Jeannie Piunti, Andrea Qi, Jin An, Shejuan Nazarian, Javad Thomas, Paul Saratsis, Amanda Neuro Oncol Diffuse Midline Glioma/DIPG INTRODUCTION: Diffuse midline glioma is a highly morbid pediatric cancer. Up to 80% harbor Histone H3K27M mutation, which alters Histone H3 post-translational modifications (PTMs) and genomic enrichment patterns, affecting chromatin structure and transcription. We previously identified tumorigenic patterns of H3K27Ac/bromodomain co-enrichment and pre-clinical efficacy of bromodomain inhibition (JQ1) in DMG. Here, we employ a novel proteomics approach developed at our institution to further elucidate the impact of H3K27M mutation on glioma epigenetic signatures and treatment response. METHODS: Epiproteomic analysis was performed on pediatric glioma cells (H3K27 WT n=2, H3K27M n=2) to characterize 95 distinct Histone H3 N-terminal tail modification states. Cells were treated with JQ1 or DMSO, and collected at 0h, 24h, 48h, Histones extracted from isolated nuclei and immunopurified, then analyzed by LC-MS/MS. Results were integrated with RNA-Seq and ChIP Seq (H3.3K27M, H3.3, H3K27Ac, H3K27me3, H3K4me1, H3K4me3) from the same cell lines. Pediatric glioma tissues (H3K27M WT n=3, H3K27M n= 9) were similarly analyzed to validate cell line results. RESULTS: Cell PTM profiles cluster by H3 mutation status on unsupervised analysis. Significant differential PTM abundance and genomic enrichment H3K27M, H3.3 WT, H3K27Me3 and H3K27Ac was observed between mutant and wild type cell lines with epigenetic-targeted therapy, correlating with cell transcriptomes. CONCLUSIONS: Histone H3 tail analysis reveals the effects of H3K27M mutation and bromodomain inhibition on the tumor epigenetic landscape, providing insight into mechanisms of tumorigenesis and therapy response. Further investigation of the utility of these signatures as biomarkers for diagnosis and monitoring treatment response are therefore underway. Oxford University Press 2020-12-04 /pmc/articles/PMC7715980/ http://dx.doi.org/10.1093/neuonc/noaa222.086 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Diffuse Midline Glioma/DIPG Li, Daphne Huang, Tina Camarillo, Jeannie Piunti, Andrea Qi, Jin An, Shejuan Nazarian, Javad Thomas, Paul Saratsis, Amanda DIPG-39. NOVEL PROTEOMIC ANALYSIS REVEALS EPIGENETIC THERAPEUTIC TARGETS IN PEDIATRIC GLIOMA |
title | DIPG-39. NOVEL PROTEOMIC ANALYSIS REVEALS EPIGENETIC THERAPEUTIC TARGETS IN PEDIATRIC GLIOMA |
title_full | DIPG-39. NOVEL PROTEOMIC ANALYSIS REVEALS EPIGENETIC THERAPEUTIC TARGETS IN PEDIATRIC GLIOMA |
title_fullStr | DIPG-39. NOVEL PROTEOMIC ANALYSIS REVEALS EPIGENETIC THERAPEUTIC TARGETS IN PEDIATRIC GLIOMA |
title_full_unstemmed | DIPG-39. NOVEL PROTEOMIC ANALYSIS REVEALS EPIGENETIC THERAPEUTIC TARGETS IN PEDIATRIC GLIOMA |
title_short | DIPG-39. NOVEL PROTEOMIC ANALYSIS REVEALS EPIGENETIC THERAPEUTIC TARGETS IN PEDIATRIC GLIOMA |
title_sort | dipg-39. novel proteomic analysis reveals epigenetic therapeutic targets in pediatric glioma |
topic | Diffuse Midline Glioma/DIPG |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7715980/ http://dx.doi.org/10.1093/neuonc/noaa222.086 |
work_keys_str_mv | AT lidaphne dipg39novelproteomicanalysisrevealsepigenetictherapeutictargetsinpediatricglioma AT huangtina dipg39novelproteomicanalysisrevealsepigenetictherapeutictargetsinpediatricglioma AT camarillojeannie dipg39novelproteomicanalysisrevealsepigenetictherapeutictargetsinpediatricglioma AT piuntiandrea dipg39novelproteomicanalysisrevealsepigenetictherapeutictargetsinpediatricglioma AT qijin dipg39novelproteomicanalysisrevealsepigenetictherapeutictargetsinpediatricglioma AT anshejuan dipg39novelproteomicanalysisrevealsepigenetictherapeutictargetsinpediatricglioma AT nazarianjavad dipg39novelproteomicanalysisrevealsepigenetictherapeutictargetsinpediatricglioma AT thomaspaul dipg39novelproteomicanalysisrevealsepigenetictherapeutictargetsinpediatricglioma AT saratsisamanda dipg39novelproteomicanalysisrevealsepigenetictherapeutictargetsinpediatricglioma |