Cargando…

PET-MRI nanoparticles imaging of blood–brain barrier damage and modulation after stroke reperfusion

In an acute ischaemic stroke, understanding the dynamics of blood–brain barrier injury is of particular importance for the prevention of symptomatic haemorrhagic transformation. However, the available techniques assessing blood–brain barrier permeability are not quantitative and are little used in t...

Descripción completa

Detalles Bibliográficos
Autores principales: Debatisse, Justine, Eker, Omer Faruk, Wateau, Océane, Cho, Tae-Hee, Wiart, Marlène, Ramonet, David, Costes, Nicolas, Mérida, Inés, Léon, Christelle, Dia, Maya, Paillard, Mélanie, Confais, Joachim, Rossetti, Fabien, Langlois, Jean-Baptiste, Troalen, Thomas, Iecker, Thibaut, Le Bars, Didier, Lancelot, Sophie, Bouchier, Baptiste, Lukasziewicz, Anne-Claire, Oudotte, Adrien, Nighoghossian, Norbert, Ovize, Michel, Contamin, Hugues, Lux, François, Tillement, Olivier, Canet-Soulas, Emmanuelle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716090/
https://www.ncbi.nlm.nih.gov/pubmed/33305265
http://dx.doi.org/10.1093/braincomms/fcaa193
_version_ 1783619102858805248
author Debatisse, Justine
Eker, Omer Faruk
Wateau, Océane
Cho, Tae-Hee
Wiart, Marlène
Ramonet, David
Costes, Nicolas
Mérida, Inés
Léon, Christelle
Dia, Maya
Paillard, Mélanie
Confais, Joachim
Rossetti, Fabien
Langlois, Jean-Baptiste
Troalen, Thomas
Iecker, Thibaut
Le Bars, Didier
Lancelot, Sophie
Bouchier, Baptiste
Lukasziewicz, Anne-Claire
Oudotte, Adrien
Nighoghossian, Norbert
Ovize, Michel
Contamin, Hugues
Lux, François
Tillement, Olivier
Canet-Soulas, Emmanuelle
author_facet Debatisse, Justine
Eker, Omer Faruk
Wateau, Océane
Cho, Tae-Hee
Wiart, Marlène
Ramonet, David
Costes, Nicolas
Mérida, Inés
Léon, Christelle
Dia, Maya
Paillard, Mélanie
Confais, Joachim
Rossetti, Fabien
Langlois, Jean-Baptiste
Troalen, Thomas
Iecker, Thibaut
Le Bars, Didier
Lancelot, Sophie
Bouchier, Baptiste
Lukasziewicz, Anne-Claire
Oudotte, Adrien
Nighoghossian, Norbert
Ovize, Michel
Contamin, Hugues
Lux, François
Tillement, Olivier
Canet-Soulas, Emmanuelle
author_sort Debatisse, Justine
collection PubMed
description In an acute ischaemic stroke, understanding the dynamics of blood–brain barrier injury is of particular importance for the prevention of symptomatic haemorrhagic transformation. However, the available techniques assessing blood–brain barrier permeability are not quantitative and are little used in the context of acute reperfusion therapy. Nanoparticles cross the healthy or impaired blood–brain barrier through combined passive and active processes. Imaging and quantifying their transfer rate could better characterize blood–brain barrier damage and refine the delivery of neuroprotective agents. We previously developed an original endovascular stroke model of acute ischaemic stroke treated by mechanical thrombectomy followed by positron emission tomography-magnetic resonance imaging. Cerebral capillary permeability was quantified for two molecule sizes: small clinical gadolinium Gd-DOTA (<1 nm) and AGuIX(®) nanoparticles (∼5 nm) used for brain theranostics. On dynamic contrast-enhanced magnetic resonance imaging, the baseline transfer constant K(trans) was 0.94 [0.48, 1.72] and 0.16 [0.08, 0.33] ×10(−3 )min(−1), respectively, in the normal brain parenchyma, consistent with their respective sizes, and 1.90 [1.23, 3.95] and 2.86 [1.39, 4.52] ×10(−3 )min(−1) in choroid plexus, confirming higher permeability than brain parenchyma. At early reperfusion, K(trans) for both Gd-DOTA and AGuIX(®) nanoparticles was significantly higher within the ischaemic area compared to the contralateral hemisphere; 2.23 [1.17, 4.13] and 0.82 [0.46, 1.87] ×10(−3 )min(−1) for Gd-DOTA and AGuIX(®) nanoparticles, respectively. With AGuIX(®) nanoparticles, K(trans) also increased within the ischaemic growth areas, suggesting added value for AGuIX(®). Finally, K(trans) was significantly lower in both the lesion and the choroid plexus in a drug-treated group (ciclosporin A, n = 7) compared to placebo (n = 5). K(trans) quantification with AGuIX(®) nanoparticles can monitor early blood–brain barrier damage and treatment effect in ischaemic stroke after reperfusion.
format Online
Article
Text
id pubmed-7716090
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-77160902020-12-09 PET-MRI nanoparticles imaging of blood–brain barrier damage and modulation after stroke reperfusion Debatisse, Justine Eker, Omer Faruk Wateau, Océane Cho, Tae-Hee Wiart, Marlène Ramonet, David Costes, Nicolas Mérida, Inés Léon, Christelle Dia, Maya Paillard, Mélanie Confais, Joachim Rossetti, Fabien Langlois, Jean-Baptiste Troalen, Thomas Iecker, Thibaut Le Bars, Didier Lancelot, Sophie Bouchier, Baptiste Lukasziewicz, Anne-Claire Oudotte, Adrien Nighoghossian, Norbert Ovize, Michel Contamin, Hugues Lux, François Tillement, Olivier Canet-Soulas, Emmanuelle Brain Commun Original Article In an acute ischaemic stroke, understanding the dynamics of blood–brain barrier injury is of particular importance for the prevention of symptomatic haemorrhagic transformation. However, the available techniques assessing blood–brain barrier permeability are not quantitative and are little used in the context of acute reperfusion therapy. Nanoparticles cross the healthy or impaired blood–brain barrier through combined passive and active processes. Imaging and quantifying their transfer rate could better characterize blood–brain barrier damage and refine the delivery of neuroprotective agents. We previously developed an original endovascular stroke model of acute ischaemic stroke treated by mechanical thrombectomy followed by positron emission tomography-magnetic resonance imaging. Cerebral capillary permeability was quantified for two molecule sizes: small clinical gadolinium Gd-DOTA (<1 nm) and AGuIX(®) nanoparticles (∼5 nm) used for brain theranostics. On dynamic contrast-enhanced magnetic resonance imaging, the baseline transfer constant K(trans) was 0.94 [0.48, 1.72] and 0.16 [0.08, 0.33] ×10(−3 )min(−1), respectively, in the normal brain parenchyma, consistent with their respective sizes, and 1.90 [1.23, 3.95] and 2.86 [1.39, 4.52] ×10(−3 )min(−1) in choroid plexus, confirming higher permeability than brain parenchyma. At early reperfusion, K(trans) for both Gd-DOTA and AGuIX(®) nanoparticles was significantly higher within the ischaemic area compared to the contralateral hemisphere; 2.23 [1.17, 4.13] and 0.82 [0.46, 1.87] ×10(−3 )min(−1) for Gd-DOTA and AGuIX(®) nanoparticles, respectively. With AGuIX(®) nanoparticles, K(trans) also increased within the ischaemic growth areas, suggesting added value for AGuIX(®). Finally, K(trans) was significantly lower in both the lesion and the choroid plexus in a drug-treated group (ciclosporin A, n = 7) compared to placebo (n = 5). K(trans) quantification with AGuIX(®) nanoparticles can monitor early blood–brain barrier damage and treatment effect in ischaemic stroke after reperfusion. Oxford University Press 2020-11-11 /pmc/articles/PMC7716090/ /pubmed/33305265 http://dx.doi.org/10.1093/braincomms/fcaa193 Text en © The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Debatisse, Justine
Eker, Omer Faruk
Wateau, Océane
Cho, Tae-Hee
Wiart, Marlène
Ramonet, David
Costes, Nicolas
Mérida, Inés
Léon, Christelle
Dia, Maya
Paillard, Mélanie
Confais, Joachim
Rossetti, Fabien
Langlois, Jean-Baptiste
Troalen, Thomas
Iecker, Thibaut
Le Bars, Didier
Lancelot, Sophie
Bouchier, Baptiste
Lukasziewicz, Anne-Claire
Oudotte, Adrien
Nighoghossian, Norbert
Ovize, Michel
Contamin, Hugues
Lux, François
Tillement, Olivier
Canet-Soulas, Emmanuelle
PET-MRI nanoparticles imaging of blood–brain barrier damage and modulation after stroke reperfusion
title PET-MRI nanoparticles imaging of blood–brain barrier damage and modulation after stroke reperfusion
title_full PET-MRI nanoparticles imaging of blood–brain barrier damage and modulation after stroke reperfusion
title_fullStr PET-MRI nanoparticles imaging of blood–brain barrier damage and modulation after stroke reperfusion
title_full_unstemmed PET-MRI nanoparticles imaging of blood–brain barrier damage and modulation after stroke reperfusion
title_short PET-MRI nanoparticles imaging of blood–brain barrier damage and modulation after stroke reperfusion
title_sort pet-mri nanoparticles imaging of blood–brain barrier damage and modulation after stroke reperfusion
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716090/
https://www.ncbi.nlm.nih.gov/pubmed/33305265
http://dx.doi.org/10.1093/braincomms/fcaa193
work_keys_str_mv AT debatissejustine petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT ekeromerfaruk petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT wateauoceane petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT chotaehee petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT wiartmarlene petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT ramonetdavid petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT costesnicolas petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT meridaines petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT leonchristelle petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT diamaya petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT paillardmelanie petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT confaisjoachim petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT rossettifabien petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT langloisjeanbaptiste petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT troalenthomas petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT ieckerthibaut petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT lebarsdidier petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT lancelotsophie petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT bouchierbaptiste petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT lukasziewiczanneclaire petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT oudotteadrien petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT nighoghossiannorbert petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT ovizemichel petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT contaminhugues petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT luxfrancois petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT tillementolivier petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion
AT canetsoulasemmanuelle petmrinanoparticlesimagingofbloodbrainbarrierdamageandmodulationafterstrokereperfusion