Cargando…
The Role of Machine Learning in the Understanding and Design of Materials
[Image: see text] Developing algorithmic approaches for the rational design and discovery of materials can enable us to systematically find novel materials, which can have huge technological and social impact. However, such rational design requires a holistic perspective over the full multistage des...
Autores principales: | Moosavi, Seyed Mohamad, Jablonka, Kevin Maik, Smit, Berend |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716341/ https://www.ncbi.nlm.nih.gov/pubmed/33170678 http://dx.doi.org/10.1021/jacs.0c09105 |
Ejemplares similares
-
Big-Data Science
in Porous Materials: Materials Genomics
and Machine Learning
por: Jablonka, Kevin Maik, et al.
Publicado: (2020) -
Bias free multiobjective active learning for materials design and discovery
por: Jablonka, Kevin Maik, et al.
Publicado: (2021) -
Diversifying
Databases of Metal Organic Frameworks
for High-Throughput Computational Screening
por: Majumdar, Sauradeep, et al.
Publicado: (2021) -
A data-driven perspective on the colours of metal–organic frameworks
por: Jablonka, Kevin Maik, et al.
Publicado: (2020) -
Understanding the diversity of the metal-organic framework ecosystem
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2020)