Cargando…
A semi-supervised approach for rapidly creating clinical biomarker phenotypes in the UK Biobank using different primary care EHR and clinical terminology systems
OBJECTIVES: The UK Biobank (UKB) is making primary care electronic health records (EHRs) for 500 000 participants available for COVID-19-related research. Data are extracted from four sources, recorded using five clinical terminologies and stored in different schemas. The aims of our research were t...
Autores principales: | Denaxas, Spiros, Shah, Anoop D, Mateen, Bilal A, Kuan, Valerie, Quint, Jennifer K, Fitzpatrick, Natalie, Torralbo, Ana, Fatemifar, Ghazaleh, Hemingway, Harry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7717266/ https://www.ncbi.nlm.nih.gov/pubmed/33619467 http://dx.doi.org/10.1093/jamiaopen/ooaa047 |
Ejemplares similares
-
UK phenomics platform for developing and validating electronic health record phenotypes: CALIBER
por: Denaxas, Spiros, et al.
Publicado: (2019) -
ClustEHR: a tool for generating synthetic EHR data for unsupervised learning experiments.
por: Alexander, Nonie, et al.
Publicado: (2022) -
Adiposity and grip strength: a Mendelian randomisation study in UK Biobank
por: Pinto Pereira, Snehal M., et al.
Publicado: (2022) -
Extracting Diagnoses and Investigation Results from Unstructured Text in Electronic Health Records by Semi-Supervised Machine Learning
por: Wang, Zhuoran, et al.
Publicado: (2012) -
QNOTE: an instrument for measuring the quality of EHR clinical notes
por: Burke, Harry B, et al.
Publicado: (2014)