Cargando…
An evaluation of two commercial deep learning-based information retrieval systems for COVID-19 literature
The COVID-19 pandemic has resulted in a tremendous need for access to the latest scientific information, leading to both corpora for COVID-19 literature and search engines to query such data. While most search engine research is performed in academia with rigorous evaluation, major commercial compan...
Autores principales: | Soni, Sarvesh, Roberts, Kirk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7717324/ https://www.ncbi.nlm.nih.gov/pubmed/33197268 http://dx.doi.org/10.1093/jamia/ocaa271 |
Ejemplares similares
-
TREC-COVID: rationale and structure of an information retrieval shared task for COVID-19
por: Roberts, Kirk, et al.
Publicado: (2020) -
Deep Learning-Based Retrieval System for Gigapixel Histopathology Cases and the Open Access Literature
por: Schaer, Roger, et al.
Publicado: (2019) -
COVID-19 information retrieval with deep-learning based semantic search, question answering, and abstractive summarization
por: Esteva, Andre, et al.
Publicado: (2021) -
Information Retrieval Evaluation
por: Harman, Donna
Publicado: (2011) -
Information retrieval systems: characteristics, testing and evaluation
por: Lancaster, Frederick Wilfrid
Publicado: (1979)