Cargando…
Machine-learning prediction of unplanned 30-day rehospitalization using the French hospital medico-administrative database
Predicting unplanned rehospitalizations has traditionally employed logistic regression models. Machine learning (ML) methods have been introduced in health service research and may improve the prediction of health outcomes. The objective of this work was to develop a ML model to predict 30-day all-c...
Autores principales: | Jaotombo, Franck, Pauly, Vanessa, Auquier, Pascal, Orleans, Veronica, Boucekine, Mohamed, Fond, Guillaume, Ghattas, Badih, Boyer, Laurent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7717815/ https://www.ncbi.nlm.nih.gov/pubmed/33285668 http://dx.doi.org/10.1097/MD.0000000000022361 |
Ejemplares similares
-
Machine-learning prediction for hospital length of stay using a French medico-administrative database
por: Jaotombo, Franck, et al.
Publicado: (2022) -
Predictive risk score for unplanned 30-day rehospitalizations in the French universal health care system based on a medico-administrative database
por: Pauly, Vanessa, et al.
Publicado: (2019) -
Finding the best trade-off between performance and interpretability in predicting hospital length of stay using structured and unstructured data
por: Jaotombo, Franck, et al.
Publicado: (2023) -
Use of artificial nutrition near the end of life: Results from a French national population‐based study of hospitalized cancer patients
por: Baumstarck, Karine, et al.
Publicado: (2019) -
A Multidimensional Computerized Adaptive Short-Form Quality of Life Questionnaire Developed and Validated for Multiple Sclerosis: The MusiQoL-MCAT
por: Michel, Pierre, et al.
Publicado: (2016)