Cargando…
Deep learning with attention supervision for automated motion artefact detection in quality control of cardiac T1-mapping
Cardiac magnetic resonance quantitative T1-mapping is increasingly used for advanced myocardial tissue characterisation. However, cardiac or respiratory motion can significantly affect the diagnostic utility of T1-maps, and thus motion artefact detection is critical for quality control and clinicall...
Autores principales: | Zhang, Qiang, Hann, Evan, Werys, Konrad, Wu, Cody, Popescu, Iulia, Lukaschuk, Elena, Barutcu, Ahmet, Ferreira, Vanessa M., Piechnik, Stefan K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718111/ https://www.ncbi.nlm.nih.gov/pubmed/33250143 http://dx.doi.org/10.1016/j.artmed.2020.101955 |
Ejemplares similares
-
MOCOnet: Robust Motion Correction of Cardiovascular Magnetic Resonance T1 Mapping Using Convolutional Neural Networks
por: Gonzales, Ricardo A., et al.
Publicado: (2021) -
Deep neural network ensemble for on-the-fly quality control-driven segmentation of cardiac MRI T1 mapping
por: Hann, Evan, et al.
Publicado: (2021) -
Toward Replacing Late Gadolinium Enhancement With Artificial Intelligence Virtual Native Enhancement for Gadolinium-Free Cardiovascular Magnetic Resonance Tissue Characterization in Hypertrophic Cardiomyopathy
por: Zhang, Qiang, et al.
Publicado: (2021) -
Cardiac stress T1-mapping response and extracellular volume stability of MOLLI-based T1-mapping methods
por: Burrage, Matthew K., et al.
Publicado: (2021) -
Automated Detection of Motion Artefacts in MR Imaging Using Decision Forests
por: Lorch, Benedikt, et al.
Publicado: (2017)