Cargando…
Modern machine-learning can support diagnostic differentiation of central and peripheral acute vestibular disorders
BACKGROUND: Diagnostic classification of central vs. peripheral etiologies in acute vestibular disorders remains a challenge in the emergency setting. Novel machine-learning methods may help to support diagnostic decisions. In the current study, we tested the performance of standard and machine-lear...
Autores principales: | Ahmadi, Seyed-Ahmad, Vivar, Gerome, Navab, Nassir, Möhwald, Ken, Maier, Andreas, Hadzhikolev, Hristo, Brandt, Thomas, Grill, Eva, Dieterich, Marianne, Jahn, Klaus, Zwergal, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718180/ https://www.ncbi.nlm.nih.gov/pubmed/32529578 http://dx.doi.org/10.1007/s00415-020-09931-z |
Ejemplares similares
-
A Prospective Analysis of Lesion-Symptom Relationships in Acute Vestibular and Ocular Motor Stroke
por: Zwergal, Andreas, et al.
Publicado: (2020) -
Using Base-ml to Learn Classification of Common Vestibular Disorders on DizzyReg Registry Data
por: Vivar, Gerome, et al.
Publicado: (2021) -
Determinants of functioning and health-related quality of life after vestibular stroke
por: Schuhbeck, Franziska, et al.
Publicado: (2022) -
DIZZYNET 2020: basic and clinical vestibular research united
por: Zwergal, Andreas, et al.
Publicado: (2020) -
Protocol for a prospective interventional trial to develop a diagnostic index test for stroke as a cause of vertigo, dizziness and imbalance in the emergency room (EMVERT study)
por: Möhwald, Ken, et al.
Publicado: (2017)