Cargando…
Continuous and automatic mortality risk prediction using vital signs in the intensive care unit: a hybrid neural network approach
Mortality risk prediction can greatly improve the utilization of resources in intensive care units (ICUs). Existing schemes in ICUs today require laborious manual input of many complex parameters. In this work, we present a scheme that uses variations in vital signs over a 24-h period to make mortal...
Autores principales: | Baker, Stephanie, Xiang, Wei, Atkinson, Ian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718228/ https://www.ncbi.nlm.nih.gov/pubmed/33277530 http://dx.doi.org/10.1038/s41598-020-78184-7 |
Ejemplares similares
-
Non-Contact Automatic Vital Signs Monitoring of Infants in a Neonatal Intensive Care Unit Based on Neural Networks
por: Khanam, Fatema-Tuz-Zohra, et al.
Publicado: (2021) -
Continuous non-contact vital sign monitoring in neonatal intensive care unit
por: Villarroel, Mauricio, et al.
Publicado: (2014) -
Day-to-day progression of vital-sign circadian rhythms in the intensive care unit
por: Davidson, Shaun, et al.
Publicado: (2021) -
Prediction of hypotension events with physiologic vital sign signatures in the intensive care unit
por: Yoon, Joo Heung, et al.
Publicado: (2020) -
Vital Signs Directed Therapy: Improving Care in an Intensive Care Unit in a Low-Income Country
por: Baker, Tim, et al.
Publicado: (2015)