Cargando…
Magnetoconductivity in quasiperiodic graphene superlattices
The magnetoconductivity in Fibonacci graphene superlattices is investigated in a perpendicular magnetic field B. It was shown that the B-dependence of the diffusive conductivity exhibits a complicated oscillatory behavior whose characteristics cannot be associated with Weiss oscillations, but rather...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718268/ https://www.ncbi.nlm.nih.gov/pubmed/33277613 http://dx.doi.org/10.1038/s41598-020-78479-9 |
Sumario: | The magnetoconductivity in Fibonacci graphene superlattices is investigated in a perpendicular magnetic field B. It was shown that the B-dependence of the diffusive conductivity exhibits a complicated oscillatory behavior whose characteristics cannot be associated with Weiss oscillations, but rather with Shubnikov-de Haas ones. The absense of Weiss oscillations is attributed to the existence of two incommensurate periods in Fibonacci superlattices. It was also found that the quasiperiodicity of the structure leads to a renormalization of the Fermi velocity [Formula: see text] of graphene. Our calculations revealed that, for weak B, the dc Hall conductivity [Formula: see text] exhibits well defined and robust plateaux, where it takes the unexpected values [Formula: see text] , indicating that the half-integer quantum Hall effect does not occur in the considered structure. It was finally shown that [Formula: see text] displays self-similarity for magnetic fields related by [Formula: see text] and [Formula: see text] , where [Formula: see text] is the golden mean. |
---|