Cargando…
Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China
With global warming, the carbon pool in the degradation zone of permafrost around the Arctic will gradually be disturbed and may enter the atmosphere in the form of released methane gas, becoming an important factor of environmental change in permafrost areas. We selected the northwestern section of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718274/ https://www.ncbi.nlm.nih.gov/pubmed/33277578 http://dx.doi.org/10.1038/s41598-020-78170-z |
_version_ | 1783619480978456576 |
---|---|
author | Shan, Wei Xu, Zhichao Guo, Ying Zhang, Chengcheng Hu, Zhaoguang Wang, Yuzhuo |
author_facet | Shan, Wei Xu, Zhichao Guo, Ying Zhang, Chengcheng Hu, Zhaoguang Wang, Yuzhuo |
author_sort | Shan, Wei |
collection | PubMed |
description | With global warming, the carbon pool in the degradation zone of permafrost around the Arctic will gradually be disturbed and may enter the atmosphere in the form of released methane gas, becoming an important factor of environmental change in permafrost areas. We selected the northwestern section of the Xiao Xing'an Mountains in China as the study area, located in the degradation zone on the southern margin of the permafrost region in Eurasia, and set up multiple study monitoring areas equipped with methane concentration sensors, air temperature sensors, pore water pressure sensors and soil temperature sensors for long-term monitoring of data changes using the high-density electrical method, ground penetrating radar and on-site drilling to survey the distribution of frozen soil and geological conditions in the study area, combined with remote sensing images of Sentinel-2 L1C and unmanned aerial vehicle photographs and three-dimensional image reconstruction, analysis of fire activities and related geological environmental factors. The results show that since 2004, the permafrost thickness of the marsh wetland in the study area has gradually reduced and the degradation rate obviously accelerated; the organic matter and methane hydrate (metastable methane hydrate and stable methane hydrate) stored in the permafrost under the marsh wetland are gradually entering the atmosphere in the form of methane gas. Methane emissions show seasonal changes, and the annual methane emissions can be divided into three main stages, including a high-concentration short-term emission stage (March to May), a higher-concentration long-term stable emission stage (June to August) and a higher-concentration short-term emission stage (September to November); there is a certain correlation between the change in atmospheric methane concentration and the change in atmospheric pressure and pore water pressure. From March to May every year (high-concentration short-term emission stage), with snow melting, the air humidity reaches an annual low value, and the surface methane concentration reaches an annual high value. The high concentration of methane gas entering the surface in this stage is expected to increase the risk of wildfire in the permafrost degradation area in two ways (increasing the regional air temperature and self-combustion), which may be an important factor that leads to a seasonal wildfire frequency difference in the permafrost zone of Northeast China and Southeast Siberia, with the peak in spring and autumn and the monthly maximum in spring. The increase in the frequency of wildfires is projected to further generate positive feedback on climate change by affecting soil microorganisms and soil structure. Southeastern Siberia and northeastern China, which are on the southern boundary of the permafrost region of Eurasia, need to be targeted to establish fire warning and management mechanisms to effectively reduce the risk of wildfires. |
format | Online Article Text |
id | pubmed-7718274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-77182742020-12-08 Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China Shan, Wei Xu, Zhichao Guo, Ying Zhang, Chengcheng Hu, Zhaoguang Wang, Yuzhuo Sci Rep Article With global warming, the carbon pool in the degradation zone of permafrost around the Arctic will gradually be disturbed and may enter the atmosphere in the form of released methane gas, becoming an important factor of environmental change in permafrost areas. We selected the northwestern section of the Xiao Xing'an Mountains in China as the study area, located in the degradation zone on the southern margin of the permafrost region in Eurasia, and set up multiple study monitoring areas equipped with methane concentration sensors, air temperature sensors, pore water pressure sensors and soil temperature sensors for long-term monitoring of data changes using the high-density electrical method, ground penetrating radar and on-site drilling to survey the distribution of frozen soil and geological conditions in the study area, combined with remote sensing images of Sentinel-2 L1C and unmanned aerial vehicle photographs and three-dimensional image reconstruction, analysis of fire activities and related geological environmental factors. The results show that since 2004, the permafrost thickness of the marsh wetland in the study area has gradually reduced and the degradation rate obviously accelerated; the organic matter and methane hydrate (metastable methane hydrate and stable methane hydrate) stored in the permafrost under the marsh wetland are gradually entering the atmosphere in the form of methane gas. Methane emissions show seasonal changes, and the annual methane emissions can be divided into three main stages, including a high-concentration short-term emission stage (March to May), a higher-concentration long-term stable emission stage (June to August) and a higher-concentration short-term emission stage (September to November); there is a certain correlation between the change in atmospheric methane concentration and the change in atmospheric pressure and pore water pressure. From March to May every year (high-concentration short-term emission stage), with snow melting, the air humidity reaches an annual low value, and the surface methane concentration reaches an annual high value. The high concentration of methane gas entering the surface in this stage is expected to increase the risk of wildfire in the permafrost degradation area in two ways (increasing the regional air temperature and self-combustion), which may be an important factor that leads to a seasonal wildfire frequency difference in the permafrost zone of Northeast China and Southeast Siberia, with the peak in spring and autumn and the monthly maximum in spring. The increase in the frequency of wildfires is projected to further generate positive feedback on climate change by affecting soil microorganisms and soil structure. Southeastern Siberia and northeastern China, which are on the southern boundary of the permafrost region of Eurasia, need to be targeted to establish fire warning and management mechanisms to effectively reduce the risk of wildfires. Nature Publishing Group UK 2020-12-04 /pmc/articles/PMC7718274/ /pubmed/33277578 http://dx.doi.org/10.1038/s41598-020-78170-z Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Shan, Wei Xu, Zhichao Guo, Ying Zhang, Chengcheng Hu, Zhaoguang Wang, Yuzhuo Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China |
title | Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China |
title_full | Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China |
title_fullStr | Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China |
title_full_unstemmed | Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China |
title_short | Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China |
title_sort | geological methane emissions and wildfire risk in the degraded permafrost area of the xiao xing’an mountains, china |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718274/ https://www.ncbi.nlm.nih.gov/pubmed/33277578 http://dx.doi.org/10.1038/s41598-020-78170-z |
work_keys_str_mv | AT shanwei geologicalmethaneemissionsandwildfireriskinthedegradedpermafrostareaofthexiaoxinganmountainschina AT xuzhichao geologicalmethaneemissionsandwildfireriskinthedegradedpermafrostareaofthexiaoxinganmountainschina AT guoying geologicalmethaneemissionsandwildfireriskinthedegradedpermafrostareaofthexiaoxinganmountainschina AT zhangchengcheng geologicalmethaneemissionsandwildfireriskinthedegradedpermafrostareaofthexiaoxinganmountainschina AT huzhaoguang geologicalmethaneemissionsandwildfireriskinthedegradedpermafrostareaofthexiaoxinganmountainschina AT wangyuzhuo geologicalmethaneemissionsandwildfireriskinthedegradedpermafrostareaofthexiaoxinganmountainschina |