Cargando…

High-throughput profiling of diapause regulated genes from Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae)

BACKGROUND: The parasitoid wasp, Trichogramma dendrolimi, can enter diapause at the prepupal stage. Thus, diapause is an efficient preservation method during the mass production of T. dendrolimi. Previous studies on diapause have mainly focused on ecological characteristics, so the molecular basis o...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xue, Du, Wenmei, Zhang, Junjie, Zou, Zhen, Ruan, Changchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718664/
https://www.ncbi.nlm.nih.gov/pubmed/33276726
http://dx.doi.org/10.1186/s12864-020-07285-4
Descripción
Sumario:BACKGROUND: The parasitoid wasp, Trichogramma dendrolimi, can enter diapause at the prepupal stage. Thus, diapause is an efficient preservation method during the mass production of T. dendrolimi. Previous studies on diapause have mainly focused on ecological characteristics, so the molecular basis of diapause in T. dendrolimi is unknown. We compared transcriptomes of diapause and non-diapause T. dendrolimi to identify key genes and pathways involved in diapause development. RESULTS: Transcriptome sequencing was performed on diapause prepupae, pupae after diapause, non-diapause prepupae, and pupae. Analysis yielded a total of 87,022 transcripts with an average length of 1604 bp. By removing redundant sequences and those without significant BLAST hits, a non-redundant dataset was generated, containing 7593 sequences with an average length of 3351 bp. Among them, 5702 genes were differentially expressed. The result of Gene Ontology (GO) enrichment analysis revealed that regulation of transcription, DNA-templated, oxidation-reduction process, and signal transduction were significantly affected. Ten genes were selected for validation using quantitative real-time PCR (qPCR). The changes showed the same trend as between the qPCR and RNA-Seq results. Several genes were identified as involved in diapause, including ribosomal proteins, zinc finger proteins, homeobox proteins, forkhead box proteins, UDP-glucuronosyltransferase, Glutathione-S-transferase, p53, and DNA damage-regulated gene 1 (pdrg1). Genes related to lipid metabolism were also included. CONCLUSIONS: We generated a large amount of transcriptome data from T. dendrolimi, providing a resource for future gene function research. The diapause-related genes identified help reveal the molecular mechanisms of diapause, in T. dendrolimi, and other insect species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-020-07285-4.